×

Design of Gaussian approximate filter and smoother for nonlinear systems with correlated noises at one epoch apart. (English) Zbl 1345.93154

Summary: In this study, the authors investigate the filtering and smoothing problems of nonlinear systems with correlated noises at one epoch apart. A pseudo-measurement equation is firstly reconstructed with a corresponding pseudo-measurement noise, which is no longer correlated with the process noise. Based on the reconstructed measurement model, new Gaussian Approximate (GA) filter and smoother are derived, from which Kalman filter and smoother can be obtained for linear systems. For nonlinear systems, different GA filters and smoothers can be developed through utilizing different numerical methods for computing Gaussian-weighted integrals involved in the proposed solution. Numerical examples concerning univariate nonstationary growth model, passive ranging problem, and target tracking show the efficiency of the proposed filtering and smoothing methods for nonlinear systems with correlated noises at one epoch apart.

MSC:

93E11 Filtering in stochastic control theory
93E14 Data smoothing in stochastic control theory
93C10 Nonlinear systems in control theory
Full Text: DOI

References:

[1] B.D.O. Anderson, J.B. Moore, Optimal Filtering (Prentice Hall, Englewood Cliffs, NJ, 1979) · Zbl 0688.93058
[2] I. Arasaratnam, S. Haykin, Cubature Kalman filter. IEEE Trans. Automat. Contr. 54, 1254-1269 (2009) · Zbl 1226.93123 · doi:10.1109/TAC.2009.2019800
[3] I. Arasaratnam, S. Haykin, Cubature Kalman smoothers. Automatica 47, 2245-2250 (2011) · Zbl 1226.93123 · doi:10.1016/j.automatica.2011.08.005
[4] Y. Bar-Shalom, X.R. Li, T. Kirubarajan, Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software (Wiley, New York, 2001) · doi:10.1002/0471221279
[5] R. Bucy, K. Senne, Digital synthesis of nonlinear filters. Automatica 7, 287-298 (1971) · Zbl 0269.93070 · doi:10.1016/0005-1098(71)90121-X
[6] G.B. Chang, Marginal unscented Kalman filter for cross-correlated process and observation noise at the same epoch. IET Radar Sonar Navig. 8, 54-64 (2014) · doi:10.1049/iet-rsn.2013.0095
[7] G.B. Chang, Comments on A Gaussian approximation recursive filter for nonlinear systems with correlated noises [Automatica 48(2012) 2290-2297]. Automatica. 50, 655-656 (2014) · Zbl 1257.93102
[8] L.B. Chang, B.Q. Hu, G.B. Chang, A. Li, Marginalised iterated unscented Kalman filter. IET Control Theory Appl. 6, 847-854 (2012) · doi:10.1049/iet-cta.2011.0457
[9] L.B. Chang, B.Q. Hu, A. Li, F.J. Qin, Transformed unscented Kalman filter. IEEE Trans. Automat. Contr. 58, 252-257 (2013) · Zbl 1369.93613 · doi:10.1109/TAC.2012.2204830
[10] J. Duník, M. Šimandl, O. Straka, Unscented Kalman filter: aspects and adaptive setting of scaling parameter. IEEE Trans. Automat. Contr. 57, 2411-2416 (2012) · Zbl 1301.93156 · doi:10.1109/TAC.2012.2188424
[11] J. Duník, O. Straka, M. Šimandl, Stochastic integration filter. IEEE Trans. Automat. Contr. 58, 1561-1566 (2013) · Zbl 1369.93619 · doi:10.1109/TAC.2013.2258494
[12] G.H. Golub, C.F. Van Loan, Matrix Computations, 4th edn. (The Johns Hopkins University Press, Baltimore, Maryland, 2013) · Zbl 1268.65037
[13] Z.T. Hu, M. Qin, J. Wang, Y. Liu, Unscented Kalman filter based on the decoupling of correlated noise. J. Comput. Inf. Syst. 9, 2941-2948 (2013)
[14] Y.L. Huang, Y.G. Zhang, X.X. Wang, L. Zhao, Gaussian filter for nonlinear systems with correlated noises at the same epoch. Automatica 60, 122-126 (2015) · Zbl 1331.93201 · doi:10.1016/j.automatica.2015.06.035
[15] K. Ito, K. Xiong, Gaussian filters for nonlinear filtering problems. IEEE Trans. Automat. Contr. 45, 910-927 (2000) · Zbl 0976.93079 · doi:10.1109/9.855552
[16] B. Jia, M. Xin, Y. Cheng, Sparse-grid quadrature nonlinear filtering. Automatica 48, 327-341 (2012) · Zbl 1260.93161 · doi:10.1016/j.automatica.2011.08.057
[17] B. Jia, M. Xin, Y. Cheng, High-degree cubature Kalman filter. Automatica 49, 510-518 (2013) · Zbl 1259.93118 · doi:10.1016/j.automatica.2012.11.014
[18] S.J. Julier, J.K. Uhlman, Unscented filtering and nonlinear estimation. Proc. IEEE 92, 401-422 (2004) · doi:10.1109/JPROC.2003.823141
[19] C.T. Leondes, J.B. Peller, E.B. Stear, Nonlinear smoothing theory. IEEE Trans. Syst. Sci. Cybern. 6, 63-71 (1970) · Zbl 0201.21102 · doi:10.1109/TSSC.1970.300330
[20] L. Li, Y.Q. Xia, Stochastic stability of the unscented Kalman filter with intermittent observations. Automatica 48, 978-981 (2012) · Zbl 1246.93121 · doi:10.1016/j.automatica.2012.02.014
[21] M. Nørgaard, N.K. Poulsen, O. Ravn, New developments in state estimation for nonlinear systems. Automatica 36, 1627-1638 (2000) · Zbl 0973.93050 · doi:10.1016/S0005-1098(00)00089-3
[22] M. Simandl, J. Královec, T. Söderström, Anticipative grid design in point-mass approach to nonlinear state estimation. IEEE Trans. Automat. Contr. 47, 699-702 (2002) · Zbl 1364.93757 · doi:10.1109/9.995053
[23] D. Simon, Optimal State Estimation: Kalman, \[H\infty \]∞, and Nonlinear Approaches (Wiley, New Jersey, 2006) · Zbl 1309.93171
[24] S. Särkkä, Unscented Rauch-Tung-Striebel smoother. IEEE Trans. Automat. Contr. 53, 845-849 (2008) · Zbl 1367.93691 · doi:10.1109/TAC.2008.919531
[25] R.F. Souto, J.Y. Ishihara, A robust extended Kalman filter for discrete time systems with uncertain dynamics, measurements and correlated noise, in Proceedings of 2009 American Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA, June 10C12, 2009, pp. 1888-1893
[26] J. Sarmavuori, S. Särkkä, Fourier-Hermite Rauch-Tung-Striebel smoother, in Proceedings of the 20th European Signal Processing Conference, Bucharest, Romania, 27-31 August 2012, pp. 2109-2113 · Zbl 1367.93637
[27] B.N. Vo, W.K. Ma, The Gaussian mixture probability hypothesis density filter. IEEE Trans. Signal Process. 54, 4091-4104 (2006) · Zbl 1374.94614 · doi:10.1109/TSP.2006.881190
[28] X.X. Wang, Y. Liang, Q. Pan, F. Yang, A Gaussian approximation recursive filter for nonlinear systems with correlated noises. Automatica 48, 2290-2297 (2012) · Zbl 1257.93102 · doi:10.1016/j.automatica.2012.06.035
[29] X.X. Wang, Y. Liang, Q. Pan, Z.F. Wang, General equivalence between two kinds of noise-correlation filters. Automatica 50, 3316-3318 (2014) · Zbl 1309.93171 · doi:10.1016/j.automatica.2014.10.040
[30] X.X. Wang, Y. Liang, Q. Pan, C.H. Zhao, F. Yang, Design and implementation of Gaussian filter for nonlinear system with randomly delayed measurements and correlated noises. Appl. Math. Comput. 232, 1011-1024 (2014) · Zbl 1410.93131
[31] Y.X. Wu, D.W. Hu, M.P. Wu, X.P. Hu, A numerical-integration perspective on Gaussian filters. IEEE Trans. Signal Process. 54, 2910-2921 (2006) · Zbl 1388.65025 · doi:10.1109/TSP.2006.875389
[32] S.Y. Wang, J.C. Feng, C.K. Tse, Spherical simplex-radial cubature Kalman filter. IEEE Signal Process. Lett. 21, 43-46 (2014) · doi:10.1109/LSP.2013.2290381
[33] K. Xiong, H.Y. Zhang, C.W. Chan, Performance evaluation of UKF-based nonlinear filtering. Automatica 42, 261-270 (2006) · Zbl 1103.93045 · doi:10.1016/j.automatica.2005.10.004
[34] J.H. Xu, G.M. Dimirovski, Y.W. Jing, C. Shen, UKF design and stability for nonlinear stochastic systems with correlated noises, in 46th IEEE Conference on Decision and Control, New Orleans, USA, vol 12-14 (2007), pp. 6626-6631
[35] D.G. Zhuo, C.Z. Han, R.X. Wei, Z. Lin, Synchronized multi-sensor tracks association and fusion. in Proceedings of the 4th International Conference on Information Fusion, Montreal, QC, Canada (2001) · Zbl 1369.93619
[36] Y.G. Zhang, Y.L. Huang, Z.M. Wu, N. Li, Quasi-stochastic integration filter for nonlinear estimation. Math. Probl. Eng. 2014, 1-10 (2014) · Zbl 1407.93380
[37] Y.G. Zhang, Y.L. Huang, L. Zhao, A general framework solution of Gaussian filter with multiple step randomly delayed measurements. Acta Autom. Sin. 41, 122-135 (2015) · Zbl 1340.93198
[38] Y.G. Zhang, Y.L. Huang, N. Li, L. Zhao, Embedded cubature Kalman filter with adaptive setting of free parameter. Signal Process. 114, 112-116 (2015) · doi:10.1016/j.sigpro.2015.02.022
[39] Y.G. Zhang, Y.L. Huang, N. Li, L. Zhao, Interpolatory cubature Kalman filters. IET Control Theor. Appl. 9, 1731-1739 (2015) · doi:10.1049/iet-cta.2014.0873
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.