×

Lattice rules for nonperiodic smooth integrands. (English) Zbl 1345.65070

Summary: The aim of this paper is to show that one can achieve convergence rates of \(N^{-\alpha + \delta}\) for \(\alpha > 1/2\) (and for \(\delta > 0\) arbitrarily small) for nonperiodic-smooth cosine series using lattice rules without random shifting. The smoothness of the functions can be measured by the decay rate of the cosine coefficients. For a specific choice of the parameters the cosine series space coincides with the unanchored Sobolev space of smoothness \(1\). We study the embeddings of various reproducing kernel Hilbert spaces and numerical integration in the cosine series function space and show that by applying the so-called tent transformation to a lattice rule one can achieve the (almost) optimal rate of convergence of the integration error. The same holds true for symmetrized lattice rules for the tensor product of the direct sum of the Korobov space and cosine series space, but with a stronger dependence on the dimension in this case.

MSC:

65T40 Numerical methods for trigonometric approximation and interpolation
42A16 Fourier coefficients, Fourier series of functions with special properties, special Fourier series
46E22 Hilbert spaces with reproducing kernels (= (proper) functional Hilbert spaces, including de Branges-Rovnyak and other structured spaces)
65D32 Numerical quadrature and cubature formulas

References:

[1] Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. National Bureau of Standards Applied Mathematics Series, vol. 55. U.S. Government Printing Office, Washington, D.C. (1964) · Zbl 0171.38503
[2] Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68(3), 337-404 (1950) · Zbl 0037.20701 · doi:10.1090/S0002-9947-1950-0051437-7
[3] Bakhvalov, N.S.: Approximate computation of multiple integrals (in Russian). Vestnik Moskov. Univ. Ser. Mat. Meh. Astr. Fiz. Him. 4, 3-18 (1959)
[4] Cools, R., Haegemans, A.: An imbedded family of cubature formulae for \[n\] n-dimensional product regions. J. Comput. Appl. Math. 51(2), 251-262 (1994) · Zbl 0821.65008 · doi:10.1016/0377-0427(92)00007-V
[5] Cools, R., Kuo, F.Y., Nuyens, D.: Constructing embedded lattice rules for multivariate integration. SIAM J. Sci. Comput. 28(6), 2162-2188 (2006) · Zbl 1126.65002 · doi:10.1137/06065074X
[6] Cristea, L.L., Dick, J., Pillichshammer, F., Leobacher, G.: The tent transformation can improve the convergence rate of quasi-Monte Carlo algorithms using digital nets. Numer. Math. 105(3), 413-455 (2007) · Zbl 1111.65002 · doi:10.1007/s00211-006-0046-x
[7] Dick, J.: On the convergence rate of the component-by-component construction of good lattice rules. J. Complexity 20(4), 493-522 (2004) · Zbl 1344.65034 · doi:10.1016/j.jco.2003.11.008
[8] Dick, J.: Explicit constructions of quasi-Monte Carlo rules for the numerical integration of high dimensional periodic functions. SIAM J. Numer. Anal. 45(5), 2141-2176 (2007) · Zbl 1158.65007 · doi:10.1137/060658916
[9] Dick, J.: Walsh spaces containing smooth functions and quasi-Monte Carlo rules of arbitrary high order. SIAM J. Numer. Anal. 46(3), 1519-1553 (2008) · Zbl 1189.42012 · doi:10.1137/060666639
[10] Dick, J., Pillichshammer, F.: Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge University Press, Cambridge (2010) · Zbl 1282.65012
[11] Dick, J., Pillichshammer, F., Waterhouse, B.J.: The construction of good extensible rank-1 lattices. Math. Comp. 77(264), 2345-2373 (2008) · Zbl 1211.11092 · doi:10.1090/S0025-5718-08-02009-7
[12] Dick, J., Sloan, I.H., Wang, X., Woźniakowski, H.: Good lattice rules in weighted Korobov spaces with general weights. Numer. Math. 103(1), 63-97 (2006) · Zbl 1097.65004 · doi:10.1007/s00211-005-0674-6
[13] Genz, A.C., Malik, A.A.: An imbedded family of fully symmetric numerical integration rules. SIAM J. Numer. Anal. 20(3), 580-588 (1983) · Zbl 0541.65012 · doi:10.1137/0720038
[14] Hickernell, F.J.: A generalized discrepancy and quadrature error bound. Math. Comp. 67(221), 299-322 (1998) · Zbl 0889.41025 · doi:10.1090/S0025-5718-98-00894-1
[15] Hickernell, FJ; Fang, KT (ed.); Hickernell, FJ (ed.); Niederreiter, H. (ed.), Obtaining \[O(n^{-2+\epsilon })O\](n−2+ϵ) convergence for lattice quadrature rules, 274-289 (2002), Berlin · Zbl 1002.65009 · doi:10.1007/978-3-642-56046-0_18
[16] Hickernell, F.J., Kritzer, P., Kuo, F.Y., Nuyens, D.: Weighted compound integration rules with higher order convergence for all \[NN\]. Numer. Algorithms 59(2), 161-183 (2011) · Zbl 1240.65002 · doi:10.1007/s11075-011-9482-5
[17] Hickernell, F.J., Niederreiter, H.: The existence of good extensible rank-1 lattices. J. Complexity 19(3), 286-300 (2003) · Zbl 1029.65004 · doi:10.1016/S0885-064X(02)00026-2
[18] Iserles, A., Nørsett, S.P.: From high oscillation to rapid approximation I: Modified Fourier expansions. IMA J. Numer. Anal. 28(4), 862-887 (2008) · Zbl 1221.65348 · doi:10.1093/imanum/drn006
[19] Korobov, N.M.: Number-theoretic methods in approximate analysis (in Russian). Goz. Izdat. Fiz.-Math (1963) · Zbl 0115.11703
[20] Kuo, F.Y.: Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces. J. Complexity 19(3), 301-320 (2003) · Zbl 1027.41031 · doi:10.1016/S0885-064X(03)00006-2
[21] Kuo, F.Y., Schwab, C., Sloan, I.H.: Quasi-Monte Carlo methods for high-dimensional integration: The standard (weighted Hilbert space) setting and beyond. ANZIAM J. 53(1), 1-37 (2011) · Zbl 1248.65001 · doi:10.1017/S1446181112000077
[22] Kuo, F.Y., Sloan, I.H., Woźniakowski, H.: Periodization strategy may fail in high dimensions. Numer. Algorithms 46(4), 369-391 (2007) · Zbl 1140.65011 · doi:10.1007/s11075-007-9145-8
[23] Niederreiter, H.: Random number generation and quasi-Monte Carlo methods. Number 63 in Regional Conference Series in Applied Mathematics. SIAM (1992) · Zbl 0761.65002
[24] Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems, vol. I: Linear Information. EMS Tracts in Mathematics, vol. 6. European Mathematical Society Publishing House (2008) · Zbl 1156.65001
[25] Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems, vol. II: Standard Information for Functionals. EMS Tracts in Mathematics, vol. 12. European Mathematical Society Publishing House (2010) · Zbl 1241.65025
[26] Nuyens, D., Cools, R.: Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces. Math. Comp. 75(254), 903-920 (2006) · Zbl 1094.65004 · doi:10.1090/S0025-5718-06-01785-6
[27] Nuyens, D., Cools, R.: Fast component-by-component construction of rank-1 lattice rules with a non-prime number of points. J. Complexity 22(1), 4-28 (2006) · Zbl 1092.65002 · doi:10.1016/j.jco.2005.07.002
[28] Nuyens, D., Cools, R.: Higher order quasi-Monte Carlo methods: a comparison. AIP Conf. Ser. 1281, 553-557 (2010) · doi:10.1063/1.3498535
[29] Sloan, I.H., Joe, S.: Lattice Methods for Multiple Integration. Oxford Science Publications, Oxford (1994) · Zbl 0855.65013
[30] Sloan, I.H., Kuo, F.Y., Joe, S.: On the step-by-step construction of quasi-Monte Carlo integration rules that achieve strong tractability error bounds in weighted Sobolev spaces. Math. Comp. 71(240), 1609-1640 (2002) · Zbl 1011.65001 · doi:10.1090/S0025-5718-02-01420-5
[31] Sloan, I.H., Reztsov, A.V.: Component-by-component construction of good lattice rules. Math. Comp. 71(237), 263-273 (2002) · Zbl 0985.65018 · doi:10.1090/S0025-5718-01-01342-4
[32] Temlyakov, V.N.: Cubature formulas, discrepancy, and nonlinear approximation. J. Complexity 19(3), 352-391 (2003) · Zbl 1031.41016 · doi:10.1016/S0885-064X(02)00025-0
[33] Wasilkowski, G.W., Woźniakowski, H.: Weighted tensor product algorithms for linear multivariate problems. J. Complexity 15(3), 402-447 (1999) · Zbl 0939.65079 · doi:10.1006/jcom.1999.0512
[34] Werschulz, A.G., Woźniakowski, H.: Tractability of multivariate approximation over a weighted unanchored Sobolev space. Constr. Approx. 30(3), 395-421 (2009) · Zbl 1185.41029 · doi:10.1007/s00365-009-9066-y
[35] Zaremba, SK; Zaremba, SK (ed.), La méthode des “bons treillis” pour le calcul des intégrales multiples, 39-119 (1972), Dublin · Zbl 0246.65009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.