×

Nonstationary Gabor frames – approximately dual frames and reconstruction errors. (English) Zbl 1345.42031

Summary: Nonstationary Gabor frames, recently introduced in adaptive signal analysis, represent a natural generalization of classical Gabor frames by allowing for adaptivity of windows and lattice in either time or frequency. Due to the lack of a complete lattice structure, perfect reconstruction is in general not feasible from coefficients obtained from nonstationary Gabor frames. In this paper, it is shown that for nonstationary Gabor frames that are related to some known frames for which dual frames can be computed, good approximate reconstruction can be achieved by resorting to approximately dual frames. In particular, we give constructive examples for so-called almost painless nonstationary frames, that is, frames that are closely related to nonstationary frames with compactly supported windows. The theoretical results are illustrated by concrete computational and numerical examples.

MSC:

42C15 General harmonic expansions, frames
41A58 Series expansions (e.g., Taylor, Lidstone series, but not Fourier series)
42C30 Completeness of sets of functions in nontrigonometric harmonic analysis
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
65T60 Numerical methods for wavelets

References:

[1] Balan, R., Casazza, P. G., Heil, C., Landau, Z.: Density, overcompleteness, and localization of frames I. Theory. J. Fourier Anal. Appl. 12(2), 105-143 (2006) · Zbl 1096.42014 · doi:10.1007/s00041-006-6022-0
[2] Balazs, P., Dörfler, M., Jaillet, F., Holighaus, N., Velasco, G. A.: Theory, implementation and applications of nonstationary gabor frames. J. Comput. Appl. Math. 236 (2011) · Zbl 1236.94026
[3] Balazs, P., Dörfler, M., Kowalski, M., Torrésani, B.: Adapted and adaptive linear time-frequency representations: a synthesis point of view. IEEE Signal Proc. Mag. 30(6), 20-31 (2013) · doi:10.1109/MSP.2013.2266075
[4] Brown, J.: Calculation of a constant Q spectral transform. J. Acoust. Soc. Am. 89(1), 425-434 (1991) · doi:10.1121/1.400476
[5] Casazza, P. G., Christensen, O.: Gabor frames over irregular lattices. Adv. Comput. Math. 18(2-4), 329-344 (2003) · Zbl 1027.42026 · doi:10.1023/A:1021356503075
[6] Christensen, O.: Perturbation of frames and applications to Gabor frames. In: Feichtinger, H.G., Strohmer, T. (eds.) Gabor Analysis and Algorithms: Theory and Applications, pp. 193-209. Birkhauser Boston (1998) · Zbl 0890.42010
[7] Christensen, O., Laugesen, R.: Approximately dual frame pairs in Hilbert spaces and applications to Gabor frames. Sampl. Theory Signal Image Process. (2010) · Zbl 1228.42031
[8] Chui, C. K., Shi, X.: Inequalities of Littlewood-Paley type for frames and wavelets. SIAM J. Math. Anal. 24(1), 263-277 (1993) · Zbl 0766.41013 · doi:10.1137/0524017
[9] Chui, C. K., Shi, X.: Bessel sequences and affine frames. Appl. Comput. Harmon. Anal., 29-49 (1994) · Zbl 0788.42011
[10] Daubechies, I., Grossmann, A., Meyer, Y. : Painless nonorthogonal expansions. J. Math. Phys. 27(5), 1271-1283 (1986) · Zbl 0608.46014 · doi:10.1063/1.527388
[11] De Queiroz, R., Rao, K.: Time-varying lapped transforms and wavelet packets. IEEE Trans. Signal Process. 41(12), 3293-3305 (1993) · Zbl 0841.94008 · doi:10.1109/78.258074
[12] Dörfler, M: Quilted Gabor frames - a new concept for adaptive time-frequency representation. Adv. Appl. Math. 47(4), 668-687 (2011) · Zbl 1230.42010 · doi:10.1016/j.aam.2011.02.007
[13] Dörfler, M., Matusiak, E.: Nonstationary gabor frames - existence and construction preprint, arXiv:1112.5262 (2012) · Zbl 1345.42030
[14] Evangelista, G., Dörfler, M., Matusiak, E.: Arbitrary phase vocoders by means of warping. Musica/Tecnologia, 7 (2013) · Zbl 0841.94008
[15] Favier, S. J., Zalik, R. A.: On the stability of frames and riesz bases. Appl. Comput. Harmon. Anal. 2(2), 160-173 (1995) · Zbl 0829.46006 · doi:10.1006/acha.1995.1012
[16] Feichtinger, H. G., Sun, W.: Sufficient conditions for irregular Gabor frames. Adv. Comput. Math. 26(4), 403-430 (2007) · Zbl 1120.42021 · doi:10.1007/s10444-004-7210-6
[17] Gröchenig, K.: Foundations of time-frequency analysis. Appl. Numer. Harmon. Anal. (2001). Birkhäuser Boston · Zbl 0966.42020
[18] Heil, C.: History and evolution of the density theorem for Gabor frames. J. Fourier Anal. Appl. 13(2), 113-166 (2007) · Zbl 1133.42043 · doi:10.1007/s00041-006-6073-2
[19] Holighaus, N.: Structure of nonstationary gabor frames and their dual systems. preprint, arXiv:1306.5037 (2013) · Zbl 1297.42043
[20] Holighaus, N., Dörfler, M., Velasco, G. A., Grill, T.: A framework for invertible, real-time constant-Q transforms. IEEE Trans. Audio Speech Lang. Process. 21(4), 775-785 (2013) · doi:10.1109/TASL.2012.2234114
[21] Jaillet, F.: Représentation et traitement temps-fréquence des signaux audionumériques pour des applications de design sonore. Université de la Méditerranée - Aix-Marseille II, PhD thesis (2005)
[22] Jaillet, F., Torrésani, B.: Timefrequency jigsaw puzzle: adaptive multiwindow and multilayered Gabor expansions. Int. J. Wavelets Multiresolut. Inf. Process. 2, 293-316 (2007) · Zbl 1215.94015 · doi:10.1142/S0219691307001768
[23] Janssen, A., Sondergaard, P. L.: Iterative algorithms to approximate canonical Gabor windows computational aspects. J. Fourier Anal. Appl. 13(2), 211-241 (2007) · Zbl 1133.42044 · doi:10.1007/s00041-006-6069-y
[24] Li, S.: Discrete multi-Gabor expansions. IEEE Trans, Inform. Theory 45(6), 1954-1967 (1999) · Zbl 0957.94004 · doi:10.1109/18.782117
[25] Li, S.: Proportional nonuniform multi-Gabor expansions. EURASIP J. Appl. Signal Process. 2004(17), 2723-2731 (2004) · Zbl 1107.94352 · doi:10.1155/S1110865704408178
[26] Liuni, M.: Automatic Adaptation of Sound Analysis and Synthesis. Università di Firenze and IRCAM, PhD thesis (2012)
[27] Liuni, M., Robel, A., Matusiak, E., Romito, M., Rodet, X.: Automatic adaptation of the time-frequency resolution for sound analysis and re-synthesis. IEEE Trans. Audio, Speech, and Language Process 21(5), 959-970 (2013) · doi:10.1109/TASL.2013.2239989
[28] Malvar, H.: Signal processing with Lapped Transforms. Boston, Artech House, xvi (1992) · Zbl 0948.94505
[29] Necciari, T., Balazs, P., Holighaus, N., Sondergaard, P.: The erblet transform: an auditory-based time-frequency representation with perfect reconstruction. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 498-502 (2013) · Zbl 0766.41013
[30] Romero, J. L.: Surgery of spline-type and molecular frames. J. Fourier Anal. Appl. 17, 135-174 (2011) · Zbl 1218.42014 · doi:10.1007/s00041-010-9127-4
[31] Sodagar, I., Nayebi, K., Barnwell, I. T. P.: Time-varying filter banks and wavelets. IEEE Trans. Signal Process. 42(11), 2983-2996 (1994) · doi:10.1109/78.330359
[32] Sondergaard, P.: Efficient algorithms for the discrete Gabor transform with a long Fir window. J. Fourier Anal. Appl. 18(3), 456-470 (2012) · Zbl 1245.42025 · doi:10.1007/s00041-011-9210-5
[33] Strohmer, T.: Approximation of dual Gabor frames, window decay, and wireless communications. Appl. Comput. Harmon. Anal. 11(2), 243-262 (2001) · Zbl 0986.42018 · doi:10.1006/acha.2001.0357
[34] Trefethen, L., Bau, D.: Numerical Linear Algebra SIAM (2000) · Zbl 0984.65019
[35] Velasco, G. A., Holighaus, N., Dörfler, M., Grill, T.: Constructing an invertible constant-Q transform with non-stationary Gabor frames. In: Proceedings of DAFX11 (2011)
[36] Young, R. M.: An Introduction to Nonharmonic Fourier Series, Revised 1st edn. Academic Press (2001) · Zbl 0981.42001
[37] Zeevi, Y. Y., Zibulski, M., Porat, M.: Multi-window Gabor schemes in signal and image representations. In: Feichtinger, H.G., Strohmer, T. (eds.) Gabor Analysis and Algorithms: Theory and Applications, pp. 381-407. Birkhauser Boston (1998) · Zbl 0890.42017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.