×

Group extensions and graphs. (English) Zbl 1345.20033

Summary: A classical result of Gaschütz affirms that given a finite \(A\)-generated group \(G\) and a prime \(p\), there exists a group \(G^\#\) and an epimorphism \(\varphi\colon G^\#\to G\) whose kernel is an elementary abelian \(p\)-group which is universal among all groups satisfying this property. This Gaschütz universal extension has also been described in the mathematical literature with the help of the Cayley graph. We give an elementary and self-contained proof of the fact that this description corresponds to the Gaschütz universal extension. Our proof depends on another elementary proof of the Nielsen-Schreier theorem, which states that a subgroup of a free group is free.

MSC:

20E22 Extensions, wreath products, and other compositions of groups
20F05 Generators, relations, and presentations of groups
05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
20D20 Sylow subgroups, Sylow properties, \(\pi\)-groups, \(\pi\)-structure
Full Text: DOI

References:

[1] Auinger, K.; Steinberg, B., A constructive version of the Ribes-Zalesskiĭ product theorem, Math. Z., 250, 2, 287-297 (2005) · Zbl 1074.20022
[2] Doerk, K.; Hawkes, T., (Finite Soluble Groups. Finite Soluble Groups, De Gruyter Expositions in Mathematics, vol. 4 (1992), Walter de Gruyter: Walter de Gruyter Berlin, New York) · Zbl 0753.20001
[3] Elston, G. Z., Semigroup expansions using the derived category, kernel, and Malcev products, J. Pure Appl. Algebra, 136, 231-265 (1999) · Zbl 0936.20046
[4] Gaschütz, W., Über modulare Darstellungen endlicher Gruppen, die von freien Gruppen induziert werten, Math. Z., 60, 274-286 (1954) · Zbl 0056.02401
[5] Gaschütz, W., Zur Theorie der endlichen auflösbaren Gruppen, Math. Z., 80, 300-305 (1963) · Zbl 0111.24402
[6] Gaschütz, W.; Lubeseder, U., Kennzeichnung gesättigter Formationen, Math. Z., 82, 198-199 (1963) · Zbl 0116.25603
[7] Herwig, B.; Lascar, D., Extending partial automorphisms and the profinite topology on free groups, Trans. Amer. Math. Soc., 352, 1985-2021 (2000) · Zbl 0947.20018
[8] Huppert, B., (Endliche Gruppen I. Endliche Gruppen I, Grund. Math. Wiss., vol. 134 (1967), Springer Verlag: Springer Verlag Berlin, Heidelberg, New York) · Zbl 0217.07201
[9] Lubeseder, U., Formationsbildungen in endlichen auflösbaren Gruppen (1963), Universität Kiel: Universität Kiel Kiel, (Dissertation)
[10] Nielsen, J., Om Regning med ikkekommutative faktorer og dens anvendelse i gruppenteorien, Mat. Tidsskr. B, 77-94 (1921) · JFM 48.0123.03
[11] Pin, J.-É.; Reutenauer, C., A conjecture on the Hall topology for the free group, Bull. Lond. Math. Soc., 23, 356-362 (1991) · Zbl 0754.20007
[12] Ribes, L.; Zalesskiĭ, P., On the profinite topology of a free group, Bull. Lond. Math. Soc., 25, 37-43 (1993) · Zbl 0811.20026
[13] Schmid, P., Every saturated formation is a local formation, J. Algebra, 51, 144-148 (1978) · Zbl 0372.20013
[14] Schreier, O., Die Untergruppen der freien Gruppen, Abh. Math. Semin. Univ. Hambg., 5, 1, 161-183 (1927) · JFM 53.0110.01
[15] Serre, J.-P., Trees (1980), Springer: Springer Berlin, Heidelberg · Zbl 0548.20018
[16] Steinberg, B., Finite state automata: a geometric approach, Trans. Amer. Math. Soc., 353, 3409-3464 (2001) · Zbl 0980.20067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.