×

Reduction model approach for linear time-varying systems with input delays based on extensions of Floquet theory. (English) Zbl 1344.93082

Summary: We solve stabilization problems for linear time-varying systems under input delays. We show how changes of coordinates lead to systems with time invariant drifts, which are covered by the reduction model method and which lead to the problem of stabilizing a time-varying system without delay. For continuous time periodic systems, we can use Floquet theory to find the changes of coordinates. We also prove an analogue for discrete time systems, through a discrete time extension of Floquet theory.

MSC:

93D15 Stabilization of systems by feedback
93B11 System structure simplification
93C05 Linear systems in control theory
93B18 Linearizations

Software:

mftoolbox

References:

[1] Mazenc, F.; Malisoff, M., Local stabilization of nonlinear systems through the reduction model approach, IEEE Trans. Automat. Control, 59, 11, 3033-3039 (2014) · Zbl 1360.93298
[2] Mazenc, F.; Malisoff, M.; Niculescu, S.-I., Reduction model approach for linear time-varying systems with delays, IEEE Trans. Automat. Control, 59, 8, 2068-2082 (2014) · Zbl 1360.93633
[3] Bekiaris-Liberis, N.; Krstic, M., Nonlinear Control Under Nonconstant Delays (2013), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia, PA · Zbl 1417.93006
[5] Bresch-Pietri, D.; Chauvin, J.; Petit, N., Prediction-based stabilization of linear systems subject to input-dependent input delay of integral type, IEEE Trans. Automat. Control, 59, 9, 2385-2399 (2014) · Zbl 1360.34147
[6] Krstic, M., Delay Compensation for Nonlinear, Adaptive, and PDE Systems (2009), Birkhauser: Birkhauser Boston · Zbl 1181.93003
[7] Krstic, M., Input delay compensation for forward complete and feedforward nonlinear systems, IEEE Trans. Automat. Control, 55, 1, 287-303 (2010) · Zbl 1368.93546
[8] Witrant, E.; Canudas de Wit, C.; Georges, D.; Alamir, M., Remote stabilization via communication networks with a distributed control law, IEEE Trans. Automat. Control, 52, 8, 1480-1485 (2007) · Zbl 1366.93590
[9] Artstein, Z., Linear systems with delayed controls: a reduction, IEEE Trans. Automat. Control, 27, 4, 869-879 (1982) · Zbl 0486.93011
[10] Kwon, W.; Pearson, A., Feedback stabilization of linear systems with delayed control, IEEE Trans. Automat. Control, 25, 2, 266-269 (1980) · Zbl 0438.93055
[11] Mayne, D., Control of linear systems with time delay, Electron. Lett., 4, 20, 439-440 (1968)
[12] Anh, T.; Hien, L.; Phat, V., Stability analysis for linear non-autonomous systems with continuously distributed multiple time-varying delays and applications, Acta Math. Vietnam., 36, 2, 129-143 (2011) · Zbl 1238.34136
[13] Phat, V.; Hien, L., An application of Razumikhin theorem to exponential stability for linear non-autonomous systems with time-varying delay, Appl. Math. Lett., 22, 9, 1412-1417 (2009) · Zbl 1173.34332
[15] Malisoff, M.; Zhang, F., Robustness of adaptive control under time delays for three-dimensional curve tracking, SIAM J. Control Optim., 53, 4, 2203-2236 (2015) · Zbl 1317.93228
[16] Mazenc, F.; Malisoff, M.; Lin, Z., Further results on input-to-state stability for nonlinear systems with delayed feedbacks, Automatica, 44, 9, 2415-2421 (2008) · Zbl 1153.93028
[17] Perko, L., Differential Equations and Dynamical Systems (2001), Springer-Verlag: Springer-Verlag New York, NY · Zbl 0973.34001
[20] Van Dooren, P.; Sreedhar, J., When is a periodic discrete-time system equivalent to a time-invariant one?, Linear Algebra Appl., 131-132, 131-151 (1994) · Zbl 1035.93505
[21] Hernandez-Vargas, E.; Colaneri, P.; Middleton, R.; Blanchini, F., Discrete-time control for switched positive systems with application to mitigating viral escape, Internat. J. Robust Nonlinear Control, 21, 10, 1093-1111 (2011) · Zbl 1225.93072
[22] Krtolica, R.; Ozguner, U.; Chan, H.; Goktas, H.; Winkelman, J.; Liubakka, M., Stability of linear feedback systems with random communication delays, Internat. J. Control, 59, 4, 925-953 (1994) · Zbl 0812.93073
[23] Tzes, A.; Nikolakopoulos, G.; Koutroulis, I., Development and experimental verification of a mobile client-centric networked controlled system, Eur. J. Control, 11, 3, 229-241 (2005) · Zbl 1293.93077
[24] Garcia, P.; Gonzalez, A.; Castillo, P.; Lozano, R.; Albertos, P., Robustness of a discrete-time predictor-based controller for time-varying measurement delay, Control Eng. Pract., 20, 2, 102-110 (2011)
[25] Karafyllis, I.; Krstic, M., Robust predictor feedback for discrete-time systems with input delays, Internat. J. Control, 86, 9, 1652-1663 (2013) · Zbl 1278.93155
[26] Culver, W., On the existence and uniqueness of the real logarithm of a matrix, Proc. Amer. Math. Soc., 17, 1146-1151 (1966) · Zbl 0143.26402
[27] Higham, N., Functions of Matrices: Theory and Computation (2008), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia, PA · Zbl 1167.15001
[28] Barreira, L.; Valls, C., Ordinary Differential Equations, Qualitative Theory (2012), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 1264.34001
[31] Bini, D.; Higham, N.; Meini, B., Algorithms for the matrix pth root, Numer. Algorithms, 39, 4, 349-378 (2005) · Zbl 1103.65046
[32] Mazenc, F.; Niculescu, S.-I.; Krstic, M., Lyapunov-Krasovskii functionals and application to input delay compensation for linear time-invariant systems, Automatica, 48, 7, 1317-1323 (2012) · Zbl 1246.93102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.