×

Performance enhancement of pharmacokinetic diffuse fluorescence tomography by use of adaptive extended Kalman filtering. (English) Zbl 1344.92099

Summary: Due to both the physiological and morphological differences in the vascularization between healthy and diseased tissues, pharmacokinetic diffuse fluorescence tomography (DFT) can provide contrast-enhanced and comprehensive information for tumor diagnosis and staging. In this regime, the extended Kalman filtering (EKF) based method shows numerous advantages including accurate modeling, online estimation of multiparameters, and universal applicability to any optical fluorophore. Nevertheless the performance of the conventional EKF highly hinges on the exact and inaccessible prior knowledge about the initial values. To address the above issues, an adaptive-EKF scheme is proposed based on a two-compartmental model for the enhancement, which utilizes a variable forgetting-factor to compensate the inaccuracy of the initial states and emphasize the effect of the current data. It is demonstrated using two-dimensional simulative investigations on a circular domain that the proposed adaptive-EKF can obtain preferable estimation of the pharmacokinetic-rates to the conventional-EKF and the enhanced-EKF in terms of quantitativeness, noise robustness, and initialization independence. Further three-dimensional numerical experiments on a digital mouse model validate the efficacy of the method as applied in realistic biological systems.

MSC:

92C55 Biomedical imaging and signal processing
93E11 Filtering in stochastic control theory
Full Text: DOI

References:

[1] Bauer, L. A., Applied Clinical Pharmacokinetics (2008), New York, NY, USA: McGraw-Hill, New York, NY, USA
[2] Desmettre, T.; Devoisselle, J. M.; Mordon, S., Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography, Survey of Ophthalmology, 45, 1, 15-27 (2000) · doi:10.1016/S0039-6257(00)00123-5
[3] Alacam, B.; Yazici, B., Direct reconstruction of pharmacokinetic-rate images of optical fluorophores from NIR measurements, IEEE Transactions on Medical Imaging, 28, 9, 1337-1353 (2009) · doi:10.1109/tmi.2009.2015294
[4] Intes, X.; Ripoll, J.; Chen, Y.; Nioka, S.; Yodh, A. G.; Chance, B., In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green, Medical Physics, 30, 6, 1039-1047 (2003) · doi:10.1118/1.1573791
[5] Milstein, A. B.; Webb, K. J.; Bouman, C. A., Estimation of kinetic model parameters in fluorescence optical diffusion tomography, Journal of the Optical Society of America A. Optics, Image Science, and Vision, 22, 7, 1357-1368 (2005) · doi:10.1364/JOSAA.22.001357
[6] Alacam, B.; Yazici, B.; Intes, X.; Chance, B., Extended Kalman filtering for the modeling and analysis of ICG pharmacokinetics in cancerous tumors using NIR optical methods, IEEE Transactions on Biomedical Engineering, 53, 10, 1861-1871 (2006) · doi:10.1109/tbme.2006.881796
[7] Gurfinkel, M.; Thompson, A. B.; Ralston, W.; Troy, T. L.; Moore, A. L.; Moore, T. A.; Gust, J. D.; Tatman, D.; Reynolds, J. S.; Muggenburg, B.; Nikula, K.; Pandey, R.; Mayer, R. H.; Hawrysz, D. J.; Sevick-Muraca, E. M., Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study, Photochemistry and Photobiology, 72, 1, 94-102 (2000)
[8] Cuccia, D. J.; Bevilacqua, F.; Durkin, A. J.; Merritt, S.; Tromberg, B. J.; Gulsen, G.; Yu, H.; Wang, J.; Nalcioglu, O., In vivo quantification of optical contrast agent dynamics in rat tumors by use of diffuse optical spectroscopy with magnetic resonance imaging coregistration, Applied Optics, 42, 16, 2940-2950 (2003) · doi:10.1364/AO.42.002940
[9] Liu, X.; Guo, X.; Liu, F.; Zhang, Y.; Zhang, H.; Hu, G.; Bai, J., Imaging of indocyanine green perfusion in mouse liver with fluorescence diffuse optical tomography, IEEE Transactions on Biomedical Engineering, 58, 8, 2139-2143 (2011) · doi:10.1109/tbme.2011.2135858
[10] Alacam, B.; Yazici, B.; Intes, X.; Nioka, S.; Chance, B., Pharmacokinetic-rate images of indocyanine green for breast tumors using near-infrared optical methods, Physics in Medicine and Biology, 53, 4, 837-859 (2008) · doi:10.1088/0031-9155/53/4/002
[11] La Scala, B. F.; Bitmead, R. R., Design of an extended Kalman filter frequency tracker, IEEE Transactions on Signal Processing, 44, 3, 739-742 (1996) · doi:10.1109/78.489052
[12] Boutayeb, M.; Aubry, D., A strong tracking extended Kalman observer for nonlinear discrete-time systems, IEEE Transactions on Automatic Control, 44, 8, 1550-1556 (1999) · Zbl 0957.93086 · doi:10.1109/9.780419
[13] Fathabadi, V.; Shahbazian, M.; Salahshour, K.; Jargani, L., Comparison of adaptive Kalman filter methods in state estimation of a nonlinear system using asynchronous measurements, Proceedings of the World Congress on Engineering and Computer Science (WCECS ’09)
[14] Ozbek, L.; Efe, M., An adaptive extended Kalman filter with application to compartment models, Communications in Statistics: Simulation and Computation, 33, 1, 145-158 (2004) · Zbl 1058.62107 · doi:10.1081/sac-120028438
[15] Ozbek, L.; Efe, M.; Babacan, E. K.; Yazihan, N., Online estimation of capillary permeability and contrast agent concentration in rat tumors, Hacettepe Journal of Mathematics and Statistics, 39, 2, 283-293 (2010) · Zbl 1196.62146
[16] Kim, K. H.; Lee, J. G.; Park, C. G.; Jee, G. I., The stability analysis of the adaptive fading extended Kalman filter, Proceedings of the 16th IEEE International Conference on Control Applications. Part of IEEE Multi-Conference on Systems and Control (CCA ’07) · doi:10.1109/cca.2007.4389361
[17] Sourbron, S., A tracer-kinetic field theory for medical imaging, IEEE Transactions on Medical Imaging, 33, 4, 935-946 (2014) · doi:10.1109/tmi.2014.2300450
[18] Sourbron, S. P.; Buckley, D. L., Tracer kinetic modelling in MRI: estimating perfusion and capillary permeability, Physics in Medicine and Biology, 57, 2, R1-R33 (2012) · doi:10.1088/0031-9155/57/2/r1
[19] Anderson, D. H., Compartmental Modeling and Tracer Kinetics. Compartmental Modeling and Tracer Kinetics, Lecture Notes in Biomathematics (1983), Berlin, Germany: Springer, Berlin, Germany · Zbl 0509.92001
[20] Jacquez, J. A., Compartmental Analysis in Biology and Medicine: Kinetics of Distribution of Tracer-Labeled Materials (1972), New York, NY, USA: Elsevier, New York, NY, USA
[21] Wang, X.; Wu, L.; Yi, X.; Zhang, L.; Gao, F.; Zhao, H., An adaptive extended Kalman filter for fluorescence diffuse optical tomography of tumor pharmacokinetics, 8th Biomedical Applications of Light Scattering · doi:10.1117/12.2036991
[22] Mohamed, A. H.; Schwarz, K. P., Adaptive Kalman filtering for INS/GPS, Journal of Geodesy, 73, 4, 193-203 (1999) · Zbl 1001.86014 · doi:10.1007/s001900050236
[23] Ntziachristos, V.; Tung, C.-H.; Bremer, C.; Weissleder, R., Fluorescence molecular tomography resolves protease activity in vivo, Nature Medicine, 8, 7, 757-760 (2002) · doi:10.1038/nm729
[24] Milstein, A. B.; Oh, S.; Webb, K. J.; Bouman, C. A.; Zhang, Q.; Boas, D. A.; Millane, R. P., Fluorescence optical diffusion tomography, Applied Optics, 42, 16, 3081-3094 (2003) · doi:10.1364/AO.42.003081
[25] Baeten, J.; Niedre, M.; Dunham, J.; Ntziachristos, V., Development of fluorescent materials for diffuse fluorescence tomography standards and phantoms, Optics Express, 15, 14, 8681-8694 (2007) · doi:10.1364/oe.15.008681
[26] Zhang, L.; Gao, F.; He, H.; Zhao, H., Three-dimensional scheme for time-domain fluorescence molecular tomography based on Laplace transforms with noise-robust factors, Optics Express, 16, 10, 7214-7223 (2008) · doi:10.1364/oe.16.007214
[27] Gao, F.; Li, J.; Zhang, L.; Poulet, P.; Zhao, H.; Yamada, Y., Simultaneous fluorescence yield and lifetime tomography from time-resolved transmittances of small-animal-sized phantom, Applied Optics, 49, 16, 3163-3172 (2010) · doi:10.1364/AO.49.003163
[28] Wang, L. V.; Wu, H.-I., Biomedical Optics: Principles and Imaging (2007), Hoboken, NJ, USA: John Wiley & Sons, Hoboken, NJ, USA
[29] Dogdas, B.; Stout, D.; Chatziioannou, A. F.; Leahy, R. M., Digimouse: a 3D whole body mouse atlas from CT and cryosection data, Physics in Medicine and Biology, 52, 3, 577-587 (2007) · doi:10.1088/0031-9155/52/3/003
[30] Yi, H.; Chen, D.; Qu, X.; Peng, K.; Chen, X.; Zhou, Y.; Tian, J.; Liang, J., Multilevel, hybrid regularization method for reconstruction of fluorescent molecular tomography, Applied Optics, 51, 7, 975-986 (2012) · doi:10.1364/AO.51.000975
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.