×

Dimension of fractional Brownian motion with variable drift. (English) Zbl 1344.60040

Summary: Let \(X\) be a fractional Brownian motion in \({\mathbb {R}}^d\). For any Borel function \(f:[0,1] \to {\mathbb {R}}^d\), we express the Hausdorff dimension of the image and the graph of \(X+f\) in terms of \(f\). This is new even for the case of Brownian motion and continuous \(f\), where it was known that this dimension is almost surely constant. The expression involves an adaptation of the parabolic dimension previously used by Taylor and Watson to characterize polarity for the heat equation. In the case when the graph of \(f\) is a self-affine McMullen-Bedford carpet, we obtain an explicit formula for the dimension of the graph of \(X+f\) in terms of the generating pattern. In particular, we show that it can be strictly bigger than the maximum of the Hausdorff dimension of the graph of \(f\) and that of \(X\). Despite the random perturbation, the Minkowski and Hausdorff dimension of the graph of \(X+f\) can disagree.

MSC:

60G22 Fractional processes, including fractional Brownian motion
60J65 Brownian motion
28A78 Hausdorff and packing measures

References:

[1] Bayart, F., Heurteaux, Y.: On the Hausdorff dimension of graphs of prevalent continuous functions on compact sets. In: Barral, J., Seuret, S. (eds.) Further Developments in Fractals and Related Fields. Birkhauser, Basel (2013) · Zbl 1268.28003
[2] Bedford, T.: Crinkly curves, Markov partitions and box dimensions in self-similar sets. PhD thesis, Ph.D. Thesis, University of Warwick (1984) · Zbl 0927.28006
[3] Billingsley, P.: Hausdorff dimension in probability theory. Ill. J. Math. 4, 187-209 (1960) · Zbl 0098.10602
[4] Cajar, H.: Billingsley dimension in probability spaces. Lecture Notes in Mathematics, vol. 892. Springer, Berlin (1981) · Zbl 0508.60002
[5] Carleson, L.: Selected problems on exceptional sets. Van Nostrand Mathematical Studies, No. 13. D. Van Nostrand Co., Inc., Princeton (1967) · Zbl 0189.10903
[6] Charmoy, P.H.A., Peres, Y., Sousi, P.: Minkowski dimension of brownian motion with drift. arXiv:1208.0586 (2012) · Zbl 1305.60076
[7] Falconer, K.J.: The Hausdorff dimension of self-affine fractals. Math. Proc. Camb. Philos. Soc. 103(2), 339-350 (1988) · Zbl 0642.28005 · doi:10.1017/S0305004100064926
[8] Kahane, J.-P.: Some Random Series of Functions, Cambridge Studies in Advanced Mathematics, vol. 5, 2nd edn. Cambridge University Press, Cambridge (1985) · Zbl 0571.60002
[9] Kechris, A.S.: Classical Descriptive Set Theory, Graduate Texts in Mathematics, vol. 156. Springer, New York (1995) · Zbl 0819.04002 · doi:10.1007/978-1-4612-4190-4
[10] Kenyon, R., Peres, Y.: Hausdorff dimensions of sofic affine-invariant sets. Israel J. Math. 94, 157-178 (1996) · Zbl 1075.37503 · doi:10.1007/BF02762702
[11] Khoshnevisan, D., Xiao, Y.: Brownian motion and thermal capacity. arXiv e-prints (2011) · Zbl 1305.60077
[12] McMullen, C.: The Hausdorff dimension of general Sierpiński carpets. Nagoya Math. J. 96, 1-9 (1984) · Zbl 0539.28003
[13] Mörters, P., Peres, Y.: Brownian motion. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (with an appendix by Oded Schramm and Wendelin Werner) (2010) · Zbl 1243.60002
[14] Peres, Y.: The self-affine carpets of McMullen and Bedford have infinite Hausdorff measure. Math. Proc. Camb. Philos. Soc. 116(3), 513-526 (1994) · Zbl 0811.28005 · doi:10.1017/S0305004100072789
[15] Peres, Y., Sousi, P.: Brownian motion with variable drift: 0-1 laws, hitting probabilities and Hausdorff dimension. Math. Proc. Camb. Philos. Soc. 153(2), 215-234 (2012) · Zbl 1260.60168 · doi:10.1017/S0305004112000217
[16] Solomyak, B.: Measure and dimension for some fractal families. Math. Proc. Camb. Philos. Soc. 124(3), 531-546 (1998) · Zbl 0927.28006 · doi:10.1017/S0305004198002680
[17] Taylor, S.J., Watson, N.A.: A Hausdorff measure classification of polar sets for the heat equation. Math. Proc. Camb. Philos. Soc. 97(2), 325-344 (1985) · Zbl 0584.31006 · doi:10.1017/S0305004100062873
[18] Watson, N.A.: Green functions, potentials, and the Dirichlet problem for the heat equation. Proc. Lond. Math. Soc. (3) 33(2), 298 (1976) · Zbl 0336.35046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.