×

Qualitative assessment of the role of temperature variations on malaria transmission dynamics. (English) Zbl 1343.92455

Summary: A new mechanistic deterministic model for assessing the impact of temperature variability on malaria transmission dynamics is developed. Sensitivity and uncertainty analyses of the model parameters reveal that, for temperature values in the range 16–34\(°\) C, the three parameters with the greatest influence on disease dynamics are the mosquito carrying capacity, transmission probability per contact for susceptible mosquitoes and human recruitment rate. This study emphasizes the combined use of mosquito-reduction strategies and personal protection against mosquito bites during periods when the mean monthly temperatures are in the range 16.7–25\(° \) C. For higher monthly mean temperatures in the range 26–34\(°\) C, mosquito-reduction strategies should be emphasized ahead of personal protection. Numerical simulations of the model reveal that mosquito maturation rate has a minimum sensitivity (to the associated reproduction threshold of the model) at 24\(°\) C and maximum at 30\(°\) C. The mosquito biting rate has maximum sensitivity at 26\(°\) C, while the minimum value for the transmission probability per bite for susceptible mosquitoes occurs at 24\(°\) C. Furthermore, it is shown, using mean monthly temperature data from 67 cities across the four regions of sub-Saharan Africa, that malaria burden (measured in terms of the total number of new cases of infection) increases with increasing temperature in the range 16–28\(°\) C and decreases for temperature values above 28\(°\) C in West Africa, 27\(°\) C in Central Africa, 26\(°\) C in East Africa and 25\(°\) C in South Africa. These findings, which support and complement a recent study by other authors, reinforce the potential importance of temperature and temperature variability on future malaria transmission trends. Further simulations show that mechanistic malaria transmission models that do not incorporate temperature variability may under-estimate disease burden for temperature values in the range 23–27\(°\) C, and over-estimate disease burden for temperature values in the ranges 16–22\(°\) C and 28–32\(°\) C. Additionally, models that do not explicitly incorporate the dynamics of immature mosquitoes may under- or over-estimate malaria burden, depending on mosquito abundance and mean monthly temperature profile in the community.

MSC:

92D30 Epidemiology
Full Text: DOI

References:

[1] 1. World Health Organization. Malaria (2010). Available at http://www.who.int/medi- acentre/factsheets/fs094/en/.
[2] 2. World Health Organization, World Malaria Report, 2009.
[3] 3. Ostfeld RS, Climate change and the distribution and intensity of infectious diseases, Ecology90(4) :903-905, 2009. genRefLink(16, ’S0218339015500308BIB003’, ’10.1890
[4] 4. Reiter P, Climate change and mosquito-borne disease, Env Health Persp109 :141-161, 2001. genRefLink(16, ’S0218339015500308BIB004’, ’10.1289
[5] 5. Rogers DJ, Randolph SE, The global spread of malaria in a future, warmer world, Science289 :1763-1767, 2000. genRefLink(16, ’S0218339015500308BIB005’, ’10.1126
[6] 6. Rohr JR, Dobson AP, Johnson , Pieter TJ et al., Frontiers in climate change disease research, Trends Ecol Evol26(6) :270-277, 2011. genRefLink(16, ’S0218339015500308BIB006’, ’10.1016
[7] 7. Hansen J, Sato M, Ruedy R, Perception of climate change, Proc Natl Acad Sci USA109 :E2415-2423, 2012. genRefLink(16, ’S0218339015500308BIB007’, ’10.1073
[8] 8. Intergovernmental Panel on Climate Change, Fourth Assessment Report: Climate Change 2007, Working Group I Report: The Physical Science Basis. Geneva: IPCC, 2007.
[9] 9. Githeko AK, Lindsay SW, Confalonieri UE, Patz JA, Climate change and vectorborne diseases: A regional analysis, Bull World Health Org78 :9, 2000. genRefLink(128, ’S0218339015500308BIB009’, ’000089263900008’);
[10] 10. Patz JA, Riesen WK, Immunology, climate change and vector-borne diseases, Trends Immun22 :4, 2001. genRefLink(128, ’S0218339015500308BIB010’, ’000169936200001’);
[11] 11. Rueda LM, Patel KJ, Axtell RC, Stinner RR, Temperature-dependent development and survival rates of Culex quinquefasciatus Aedes aegypti (Diptera: Culicidae), J Med Entomol27 :892-898, 1990. genRefLink(16, ’S0218339015500308BIB011’, ’10.1093
[12] 12. Egbendewe-Mondzozo A, Musumba M, McCarl BA and Wu X, Climate change and vector-borne diseases: An economic impact analysis of malaria in Africa, Int J Environ Res Public Health8(3) :913-930, 2011. genRefLink(16, ’S0218339015500308BIB012’, ’10.3390
[13] 13. Turell MJ, Effects of environmental temperature on the vector competence of Aedes fowleri for Rift Valley fever virus, Res Virol140 :147-154, 1989. genRefLink(16, ’S0218339015500308BIB013’, ’10.1016
[14] 14. Faye O, Gaye O, Fontenille D, Hbrard G, Konate L, Sy N, Herve JP, Toure YT, Diallo S and Molez JF, Malaria decrease and drought in the Niayes area of Senegal, Sante5 :299-305, 1995.
[15] 15. de Souza DK, Owusu PN, Wilson MD, Impact of climate change on the geographic scope of diseases, in Chhetri N (ed.), Human and Social Dimensions of Climate Change, 2012, Available at http://dx.doi.org/10.5772/50646 . genRefLink(16, ’S0218339015500308BIB015’, ’10.5772
[16] 16. Parham PE, Michael E, Modeling the effects of weather and climate change on malaria transmission, Environ Health Perspect118(5) :620-626, 2010, doi: 10.1289/ehp.0901256 . genRefLink(16, ’S0218339015500308BIB016’, ’10.1289
[17] 17. Githeko AK, Malaria and climate change, Commonwealth’s Health Ministers Update, 2009/2010.
[18] 18. MARA/ARMA, Towards an Atlas of Malaria Risk in Africa, Albany Print Ltd., Durban, pp. 1-31, South Africa.
[19] 19. Paaijmans KP, Wandago MO, Githeko AK, Takken W, Unexpected high losses of Anopheles gambiae larvae due to rainfall, PLoS One2 :11, 2007, doi: 10.1371/journal. pone.0001146 .
[20] 20. Paaijmans KP, Read AF, Thomas MB, Understanding the link between malaria risk and climate, Proc Natl Acad Sci USA106 :13844-13849, 2009. genRefLink(16, ’S0218339015500308BIB020’, ’10.1073
[21] 21. Wandiga S, Opondo M, Olago D, Githeko A, Githui F, Marshall M, Downs T, Opere A, Oludhe C, Ouma G, Yanda P, Kangalawe R, Kabumbuli R, Kathuri J, Apindi E, Olaka L, Ogallo L, Mugambi P, Sigalla R, Nanyunja R, Baguma T, Achola P, Vulnerability to epidemic malaria in the highlands of lake Victoria basin: The role of climate change/variability, hydrology and socio-economic factors, Climatic Change99 :473-497, 2010. genRefLink(16, ’S0218339015500308BIB021’, ’10.1007
[22] 22. Zhou G, Noboru M, Githeko A, Yan G, Association between climate variability and malaria epidemic in the east African highlands, Proc Natl Acad Sci USA101 :2375-2380, 2003. genRefLink(16, ’S0218339015500308BIB022’, ’10.1073
[23] 23. Blanford JI, Blanford S, Crane RG, Mann ME, Paaijmans KP, Schreiber KV, Thomas MB, Implications of temperature variation for malaria parasite development across Africa, Sci Rep3 :1300, 2013, doi: 10.1038/srep01300 . genRefLink(16, ’S0218339015500308BIB023’, ’10.1038
[24] 24. Paaijmans KP, Blanford S, Chan BH, Thomas MB, Warmer temperatures reduce the vectorial capacity of malaria mosquitoes, Biol Lett8(3) :465-468, 2012, doi: 10.1098/rsbl.2011.1075 . genRefLink(16, ’S0218339015500308BIB024’, ’10.1098
[25] 25. Mordecai EA et al., Optimal temperature for malaria transmission is dramatically lower than previously predicted, Ecol Lett16(1) :22-30, 2013. genRefLink(16, ’S0218339015500308BIB025’, ’10.1111
[26] 26. Lunde TM, Bayoh MN, Lindtjorn B, How malaria models relate temperature to malaria transmission, Parasites Vectors6 :20, 2013, Available at http:// www.parasitesandvectors.com/content/6/1/20 .
[27] 27. Parham PE, Pople D, Christiansen-Jucht C, Lindsay S, Hinsley W, Michael E, Modeling the role of environmental variables on the population dynamics of the malaria vectorAnopheles, gambiae sensu stricto, Malaria J11 :271, 2012, doi: 10.1186/1475-2875-11-271 . genRefLink(16, ’S0218339015500308BIB027’, ’10.1186
[28] 28. Beck-Johnson LM, Nelson WA, Paaijmans KP, Read AF, Thomas MB, Bjornstad, ON, The effect of temperature on anopheles mosquito population dynamics and the potential for malaria transmission, PLOS One8(11) :e79276, 2013. genRefLink(16, ’S0218339015500308BIB028’, ’10.1371
[29] 29. Depinay JO, Mbogo CM, Killeen G, Knols B et al., A simulation model of African Anopheles ecology and population dynamics for the analysis of malaria transmission, Malaria J3 :29, 2004, doi: 10.1186/1475-2875-3-29 . genRefLink(16, ’S0218339015500308BIB029’, ’10.1186
[30] 30. Eckhoff PA, A malaria transmission-directed model of mosquito life cycle and ecology, Malaria J10 :303, 2011. genRefLink(16, ’S0218339015500308BIB030’, ’10.1186
[31] 31. Ermert V, Fink AH, Jones AE, Morse AP, Development of a new version of the Liverpool Malaria Model. I. Refining the parameter settings and mathematical formulation of basic processes based on a literature review, Malaria J10 :35, 2011. genRefLink(16, ’S0218339015500308BIB031’, ’10.1186
[32] 32. Lunde TM, Korecha D, Loha E, Sorteberg A, Lindtjorn B, A dynamic model of some malaria-transmitting anopheline mosquitoes of the Afrotropical region. I. Model description and sensitivity analysis, Malaria J12 :28, 2013. genRefLink(16, ’S0218339015500308BIB032’, ’10.1186
[33] 33. White MT, Griffin JT, Churcher TS, Ferguson NM, Basanez M, Ghani AC, Modelling the impact of vector control interventions on Anopheles gambiae population dynamics, Parasites Vectors4 :153, 2011. genRefLink(16, ’S0218339015500308BIB033’, ’10.1186
[34] 34. Niger AM, Gumel AB, Mathematical analysis of the role of repeated exposure on malaria transmission dynamics, Differ Equ Dyn Syst16(3) :251-287, 2008. genRefLink(16, ’S0218339015500308BIB034’, ’10.1007 · Zbl 1181.34056
[35] 35. Blayneh K, Cao Y, Kwon H, Optimal control of vector-borne diseases: Treatment and prevention, Discrete Contin Dyn Syst Ser B11(3) :587-611, 2009. genRefLink(16, ’S0218339015500308BIB035’, ’10.3934 · Zbl 1162.92034
[36] 36. Bowman C, Gumel AB, van den Driessche P, Wu J, Zhu H, A mathematical model for assessing control strategies against West Nile virus, Bull Math Biol67 :1107-1133, 2005. genRefLink(16, ’S0218339015500308BIB036’, ’10.1016 · Zbl 1334.92392
[37] 37. Centers for Disease Control and Prevention (CDC) Anopheles Mosquitoes 2012, Available at http://www.cdc.gov/malaria/about/biology/mosquitoes/ (accessed on 6 April 2013).
[38] 38. Wikipedia Anopheles, 2013, Available at http://en.wikipedia.org/wiki/Anopheles# Life_stages (accessed on 6 April 2013).
[39] 39. Brugger K, Rubel F, Simulation of climate-change scenarios to explain Usutu-virus dynamics in Austria, Prev Vet Med88 :24-31, 2009. genRefLink(16, ’S0218339015500308BIB039’, ’10.1016
[40] 40. Laperriere V, Brugger K, Rubel F, Simulation of the seasonal cycles of bird, equine and human West Nile virus cases, Prev Vet Med88 :99-110, 2011. genRefLink(16, ’S0218339015500308BIB040’, ’10.1016
[41] 41. Rubel F, Brugger K, Hantel M, Chvala-Mannsberger S, Bakonyi T, Weissenbock H, Nowotny N, Explaining Usutu virus dynamics in Austria: Model development and calibration, Prev Vet Med85 :166-186, 2008. genRefLink(16, ’S0218339015500308BIB041’, ’10.1016
[42] 42. Bayoh MN, Lindsay SW, Effect of temperature on the development of the aquatic stages of Anopheles gambiae sensu stricto (Diptera: Culicidae), B Entomol Res93 :375-381, 2003. genRefLink(16, ’S0218339015500308BIB042’, ’10.1079
[43] 43. Koenraadt CJM, Paaijmans KP, Schneider P, Githeko AK, Takken W, Low larval vector survival explains unstable malaria in the western Kenya highlands, Trop Med Int Health11 :1195-1205, 2006. genRefLink(16, ’S0218339015500308BIB043’, ’10.1111
[44] 44. Pascual M, Ahumada JA, Chaves LF, Rodo X, Bouma M, Malaria resurgence in the East African highlands: Temperature trends revisited, Proc Natl Acad Sci USA103 :5829-5834, 2006. genRefLink(16, ’S0218339015500308BIB044’, ’10.1073
[45] 45. Detinova TS, Age-grouping methods in diptera of medical importance, with special reference to some vectors of malaria, Geneva: World Health Organization, 1962.
[46] 46. Macdonald G, The Epidemiology and Control of Malaria, Oxford University Press, London, 1957.
[47] 47. Boyd MF, Epidemiology: Factors related to the definitive host, in Boyd MF (ed.), Malariology, Vol. 1, W.B. Saunders Company, London, pp. 608-697, 1949.
[48] 48. Clements AN, Paterson GD, The analysis of mortality and survival rates in wild populations of mosquitoes, J Appl Ecol18 :373-399, 1981. genRefLink(16, ’S0218339015500308BIB048’, ’10.2307
[49] 49. Craig M, Snow RW, Le Sueur D, A climate-based distribution model of malaria transmission in sub-saharan Africa, Parasitol Today15 :105-111, 1999. genRefLink(16, ’S0218339015500308BIB049’, ’10.1016
[50] 50. Horsfall WR, Mosquitoes: Their Bionomics and Relation to Disease, Hafner Publishing Company, New York, 1955.
[51] 51. Martens P, Health and Climate Change, Earthscan, London, 1998.
[52] 52. National Climate Data Center, Available at http://www.ncdc.noaa.gov/oa/ncdc.html.
[53] 53. Microsoft Research, FetchClimate 2014, Available at http://fetchclimate2.cloudapp. net.
[54] 54. Agusto FB, Marcus N, Okosun KO, Application of optimal control to the epidemiology of malaria disease, Electron J Differ Equ2012(81) :1-22, 2012. · Zbl 1250.92026
[55] 55. Aneke SJ, Mathematical modelling of drug resistant malaria parasites and vector populations, Math Meth Appl Sci25 :335-346, 2002. genRefLink(16, ’S0218339015500308BIB055’, ’10.1002
[56] 56. Bacaër N, Sokna RC, A reaction-diffusion system modeling the spread of resistance to an antimalarial drug, Math Biosci Eng2(2) :227-238, 2005. genRefLink(16, ’S0218339015500308BIB056’, ’10.3934 · Zbl 1070.92034
[57] 57. Chitnis N, Cushing JM, Hyman JM, Bifurcation analysis of a mathematical model for malaria transmission, SIAM J Appl Math67 :24-45, 2006. genRefLink(16, ’S0218339015500308BIB057’, ’10.1137
[58] 58. Yang HM, A mathematical model for malaria transmission relating global warming and local socioeconomic conditions, Rev Saude Publica35(3) :224-231, 2001. genRefLink(16, ’S0218339015500308BIB058’, ’10.1590
[59] 59. Yang HM, Malaria transmission model for different levels of acquired immunity and temperature-dependent parameters (vector), Rev Saude Publica34(3) :223-231, 2000. genRefLink(16, ’S0218339015500308BIB059’, ’10.1590
[60] 60. Lou Y, Zhao X-Q, A climate-based malaria transmission model with structured vector population, SIAM J Appl Math70 :2023-2044, 2010. genRefLink(16, ’S0218339015500308BIB060’, ’10.1137 · Zbl 1221.34224
[61] 61. Bacaër N, Ait Dads E, On the biological interpretation of a definition for the parameter R0 in periodic population models, J Math Biol65(4) :601-621, 2012. genRefLink(16, ’S0218339015500308BIB061’, ’10.1007 · Zbl 1303.92111
[62] 62. Bacaër N, Ait Dads E, Genealogy with seasonality, the basic reproduction number, and the influenza pandemic, J Math Biol62 :741-762, 2011. genRefLink(16, ’S0218339015500308BIB062’, ’10.1007
[63] 63. Bacaër N, Guernaoui S, The epidemic threshold of vector-borne diseases with seasonality, The case of cutaneous leishmaniasis in Chichaoua, Morocco, J Math Biol3 :421-436, 2006. genRefLink(16, ’S0218339015500308BIB063’, ’10.1007 · Zbl 1098.92056
[64] 64. Bacaër N, Approximation of the basic reproduction number R0 for vector-borne diseases with a periodic vector population, Bull Math Biol69 :1067-1091, 2007. genRefLink(16, ’S0218339015500308BIB064’, ’10.1007
[65] 65. Wang W, Zhao X-Q, Threshold dynamics for compartmental epidemic models in periodic environments, J Dyn Diff Equ20 :699-717, 2008. genRefLink(16, ’S0218339015500308BIB065’, ’10.1007
[66] 66. Thieme HR, Spectral bound and reproduction number for infinite dimensional population structure and time heterogeneity, SIAM J Appl Math70 :188-211, 2009. genRefLink(16, ’S0218339015500308BIB066’, ’10.1137
[67] 67. Safi MA, Imran M, Gumel AB, Threshold dynamics of a non-autonomous SEIRS model with quarantine and isolation, Theory Biosci131 :19-30, 2012. genRefLink(16, ’S0218339015500308BIB067’, ’10.1007
[68] 68. Diekmann O, Heesterbeek JAP, Metz JAP, On the definition and computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, J Math Biol28 :503-522, 1990. genRefLink(16, ’S0218339015500308BIB068’, ’10.1007
[69] 69. van den Driessche P, Watmough J, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math Biosci180 :29-48, 2002. genRefLink(16, ’S0218339015500308BIB069’, ’10.1016 · Zbl 1015.92036
[70] 70. Erickson TR, Stefan HG, Correlations of Oklahoma stream temperatures with air temperatures. National Agricultural Water Quality Laboratory, Agricultural Research Service, U.S. Department of Agriculture Durant, Oklahoma in cooperation with Mid-Continent Ecology Division, U.S. Environmental Protection Agency Duluth, Minnesota, 1996.
[71] 71. McCombie AM, Some relations between air temperatures and the surface water temperatures of lakes, Limnol Oceanogr4(3) :252-258, 1959. genRefLink(16, ’S0218339015500308BIB071’, ’10.4319
[72] 72. Paaijmans KP, Imbahale SS, Thomas MB, Takken W, Research relevant microclimate for determining the development rate of malaria mosquitoes and possible implications of climate change, Malaria J9 :196, 2010. genRefLink(16, ’S0218339015500308BIB072’, ’10.1186
[73] 73. Pilgrim JM, Fang X, Stefan HG, Correlations of Minnesota stream water temperatures with air temperatures. Project Report 382, prepared for National Agricultural Water Quality Laboratory Agricultural Research Service U.S. Department of Agriculture Durant, Oklahoma, 1995.
[74] 74. Preud’homme EB, Stefan HG, Relationship between water temperatures and air temperatures for Central U.S. Streams. Project Report No. 333, prepared for Environmental Research Laboratory U.S. Environmental Protection Agency Duluth, Minnesota, 1992.
[75] 75. Dufois F, Assessing inter-annual and seasonal variability Least square fitting with Matlab: Application to SSTs in the vicinity of Cape Town, Available at http://www.eamnet.eu/cms/sites/eamnet.eu/files/Least_square_fitting_with_Matlab-Francois_Dufois.pdf (accessed on 15 November 2014).
[76] 76. Blower SM, Dowlatabadi H, Sensitivity and uncertainty analysis of complex models of disease transmission: An HIV model, as an example, Int Stat Rev2 :229-243, 1994. genRefLink(16, ’S0218339015500308BIB076’, ’10.2307
[77] 77. Marino S, Hogue IB, Ray CJ, Kirschner DE, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J Theor Biol254 :178-196, 2008, Available at http://dx.doi.org/10.1016/j.jtbi.2008.04.011 . genRefLink(16, ’S0218339015500308BIB077’, ’10.1016 · Zbl 1400.92013
[78] 78. Mckay MD, Beckman RJ, Conover WJ, Comparison of 3 methods for selecting values of input variables in the analysis of output from a computer code, Technometrics21 :239-245, 1979. genRefLink(16, ’S0218339015500308BIB078’, ’10.2307
[79] 79. World Health Organization. Malaria, 2014, Available at http://www.who.int/malaria/ media/world_malaria_report_2013/en/.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.