×

Inferring pathological states in cortical neuron microcircuits. (English) Zbl 1343.92091

Summary: The brain activity is to a large extent determined by states of neural cortex microcircuits. Unfortunately, accuracy of results from neural circuits’ mathematical models is often biased by the presence of uncertainties in underlying experimental data. Moreover, due to problems with uncertainties identification in a multidimensional parameters space, it is almost impossible to classify states of the neural cortex, which correspond to a particular set of the parameters. Here, we develop a complete methodology for determining uncertainties and the novel protocol for classifying all states in any neuroinformatic model. Further, we test this protocol on the mathematical, nonlinear model of such a microcircuit developed by M. Giugliano et al. [Biol. Cybern. 99, No. 4–5, 303–318 (2008; Zbl 1161.92008)] and applied in the experimental data analysis of Huntington’s disease. Up to now, the link between parameter domains in the mathematical model of Huntington’s disease and the pathological states in cortical microcircuits has remained unclear. In this paper we precisely identify all the uncertainties, the most crucial input parameters and domains that drive the system into an unhealthy state. The scheme proposed here is general and can be easily applied to other mathematical models of biological phenomena.

MSC:

92C20 Neural biology

Citations:

Zbl 1161.92008
Full Text: DOI

References:

[1] Amit, D. J.; Brunel, N., Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex, Cereb. Cortex, 7, 3, 237-252 (1997)
[2] Buhl, J.; Sumpter, D. J.; Couzin, I. D.; Hale, J. J.; Despland, E.; Miller, E.; Simpson, S. J., From disorder to order in marching locusts, Science, 312, 5778, 1402-1406 (2006)
[3] Chitnis, N.; Hyman, J. M.; Cushing, J. M., Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol., 70, 5, 1272-1296 (2008) · Zbl 1142.92025
[4] Conover, W. J.; Iman, R. L., Analysis of covariance using the rank transformation, Biometrics, 715-724 (1982)
[5] Costanza, J.; Angione, G.; Lió, C.; Nicosia, P.; Carapezza, G., Robust design of microbial strains, Bioinformatics, 28, 23, 3097-3104 (2012)
[6] Cristianini, N.; Shawe-Taylor, J., An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods (2000), Cambridge University Press: Cambridge University Press Cambridge
[9] Fisher, D.; Olasagasti, I.; Tank, D. W.; Aksay, E. R.; Goldman, M. S., A modeling framework for deriving the structural and functional architecture of a short-term memory microcircuit, Neuron, 79, 5, 987-1000 (2013)
[11] Gambazzi, L.; Gokce, O.; Seredenina, T.; Katsyuba, E.; Runne, H.; Markram, H.; Giugliano, M.; Luthi-Carter, R., Diminished activity-dependent brain-derived neurotrophic factor expression underlies cortical neuron microcircuit hypoconnectivity resulting from exposure to mutant Huntingtin fragments, J. Pharmacol. Exp. Ther., 335, 1, 13-22 (2010)
[12] Gardiner, C., Stochastic Methods (1985), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, New York, Tokyo
[13] Giugliano, M.; la Camera, G.; Fusi, S.; Senn, W., The response of cortical neurons to in vivo-like input current: theory and experimentII. Time-varying and spatially distributed inputs, Biol. Cybern., 99, 4-5, 303-318 (2008) · Zbl 1161.92008
[14] Hahn, J. S.; Monyer, H.; Tharp, B. R., Interburst interval measurements in the eggs of premature infants with normal neurological outcome, Electroencephalogr. Clin. Neurophysiol., 73, 5, 410-418 (1989)
[16] Holcman, D.; Tsodyks, M., The emergence of up and down states in cortical networks, PLoS Comput. Biol., 2, 3, e23 (2006)
[17] Hooker, G.; Ellner, S. P.; Roditi, L. D.V.; Earn, D. J., Parameterizing state-space models for infectious disease dynamics by generalized profilingmeasles in Ontario, J. R. Soc. Interface, 961-974 (2010)
[18] Iman, R. L.; Conover, W., A measure of top-down correlation, Technometrics, 29, 3, 351-357 (1987) · Zbl 0639.62041
[19] Janes, K. A.; Albeck, J. G.; Gaudet, S.; Sorger, P. K.; Lauffenburger, D. A.; Yaffe, M. B., A systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis, Science, 310, 5754, 1646-1653 (2005)
[20] Jenks, G. F., The data model concept in statistical mapping, Int. Yearb. Cartogr., 7, 1, 186-190 (1967)
[21] Keeling, M. J.; Rohani, P., Modeling Infectious Diseases in Humans and Animals (2008), Princeton University Press,: Princeton University Press, Princeton, NJ · Zbl 1279.92038
[22] Konstantoudaki, X.; Papoutsi, A.; Chalkiadaki, K.; Poirazi, P.; Sidiropoulou, K., Modulatory effects of inhibition on persistent activity in a cortical microcircuit model, Front. Neural Circuits, 8, 7 (2014)
[23] La Camera, G.; Giugliano, M.; Senn, W.; Fusi, S., The response of cortical neurons to in vivo-like input currenttheory and experiment, Biol. Cybern., 99, 4-5, 279-301 (2008) · Zbl 1154.92011
[24] Lánský, P.; Sato, S., The stochastic diffusion models of nerve membrane depolarization and interspike interval generation, J. Peripher. Nerv. Syst.: JPNS, 4, 1, 27-42 (1998)
[26] Li, F.; Chen, S.; Wang, X.; Feng, F., Pedestrian evacuation modeling and simulation on metro platforms considering panic impacts, Procedia—Soc. Behav. Sci., 138, 314-322 (2014)
[27] López-Huerta, V. G.; Carrillo-Reid, L.; Galarraga, E.; Tapia, D.; Fiordelisio, T.; Drucker-Colin, R.; Bargas, J., The balance of striatal feedback transmission is disrupted in a model of parkinsonism, J. Neurosci., 33, 11, 4964-4975 (2013)
[29] Marino, S.; Hogue, I. B.; Ray, C. J.; Kirschner, D. E., A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol., 254, 1, 178-196 (2008) · Zbl 1400.92013
[30] Markram, H., Bioinformaticsindustrializing neuroscience, Nature, 445, 7124, 160-161 (2007)
[31] Markram, K.; Markram, H., The intense world theory—a unifying theory of the neurobiology of autism, Front. Hum. Neurosci., 4, 224 (2010)
[32] Mattia, M.; del Giudice, P., Population dynamics of interacting spiking neurons, Phys. Rev. E, 66, 5, 051917 (2002)
[33] McRae, G. J.; Tilden, J. W.; Seinfeld, J. H., Global sensitivity analysis—a computational implementation of the Fourier amplitude sensitivity test (FAST), Comput. Chem. Eng., 6, 1, 15-25 (1982)
[34] Moore, J. L.; Liang, S.; Akullian, A.; Remais, J. V., Cautioning the use of degree-day models for climate change projections in the presence of parametric uncertainty, Ecol. Appl., 22, 8, 2237-2247 (2012)
[35] Morris, M. D., Factorial sampling plans for preliminary computational experiments, Technometrics, 33, 2, 161-174 (1991)
[36] Opris, I.; Casanova, M. F., Prefrontal cortical minicolumnfrom executive control to disrupted cognitive processing, Brain, 137, 7, 1863-1875 (2014)
[37] Perin, R.; Telefont, M.; Markram, H., Computing the size and number of neuronal clusters in local circuits, Front. Neuroanat., 7, 1 (2013)
[38] Rauch, A.; La Camera, G.; Luscher, H.-R.; Senn, W.; Fusi, S., Neocortical pyramidal cells respond as integrate-and-fire neurons to in vivo-like input currents, J. Neurophysiol., 90, 3, 1598-1612 (2003)
[39] Rubinstein, R. Y.; Shapiro, A., Discrete Event Systems: Sensitivity Analysis and Stochastic Optimization by the Score Function Method, vol. 346 (1993), Wiley: Wiley New York · Zbl 0805.93002
[40] Saltelli, A.; Chan, K.; Scott, E. M., Sensitivity Analysis, vol. 134 (2000), Wiley: Wiley New York · Zbl 0961.62091
[41] Saltelli, A.; Sobol, I. M., About the use of rank transformation in sensitivity analysis of model output, Reliab. Eng. Syst. Saf., 50, 3, 225-239 (1995)
[42] Saltelli, A.; Tarantola, S.; Campolongo, F.; Ratto, M., Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models (2004), John Wiley & Sons, Chichester · Zbl 1049.62112
[43] Savage, I. R., Contributions to the theory of rank order statistics—the two-sample case, Ann. Math. Stat., 590-615 (1956) · Zbl 0073.13904
[44] Sobol׳, I. M., Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Math. Comput. Simul., 55, 1-3, 271-280 (2001) · Zbl 1005.65004
[45] Vonsattel, J. P.G.; DiFiglia, M., Huntington disease, J. Neuropathol. Exp. Neurol., 57, 5, 369-384 (1998)
[46] Wilson, H. R.; Cowan, J. D., Excitatory and inhibitory interactions in localized populations of model neurons, Biophys. J., 12, 1, 1-24 (1972)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.