×

Lift vs. drag based mechanisms for vertical force production in the smallest flying insects. (English) Zbl 1343.92050

Summary: We used computational fluid dynamics to determine whether lift- or drag-based mechanisms generate the most vertical force in the flight of the smallest insects. These insects fly at Re on the order of 4-60 where viscous effects are significant. Detailed quantitative data on the wing kinematics of the smallest insects is not available, and as a result both drag- and lift-based strategies have been suggested as the mechanisms by which these insects stay aloft. We used the immersed boundary method to solve the fully-coupled fluid-structure interaction problem of a flexible wing immersed in a two-dimensional viscous fluid to compare three idealized hovering kinematics: a drag-based stroke in the vertical plane, a lift-based stroke in the horizontal plane, and a hybrid stroke on a tilted plane. Our results suggest that at higher Re, a lift-based strategy produces more vertical force than a drag-based strategy. At the Re pertinent to small insect hovering, however, there is little difference in performance between the two strategies. A drag-based mechanism of flight could produce more vertical force than a lift-based mechanism for insects at \(\mathrm{Re}<5\); however, we are unaware of active fliers at this scale.

MSC:

92C10 Biomechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
Full Text: DOI

References:

[1] Alben, S.; Shelley, M., Drag reduction through self-similar bending of a flexible body, Nature, 420, 479-481 (2002)
[2] Alben, S.; Shelley, M., How flexibility induces streamlining in a two-dimensional flow, Phys. Fluids, 16, 1694-1713 (2004) · Zbl 1186.76020
[3] Austin, A.; Dowton, M., Hymenoptera: evolution, Biodiversity and Biological Control (2000), Csiro Publishing: Csiro Publishing Australia
[4] Bennet, L., Effectiveness and flight of small insects, Ann. Entomol. Soc. Am., 66, 6, 1187-1190 (1973)
[5] Berman, G. J.; Wang, Z., Energy-minimizing kinematics in hovering insect flight, J. Fluid Mech., 582, 153-168 (2007) · Zbl 1115.76086
[7] Cheer, A. Y.L.; Koehl, M. A.R., Paddles and rakes: fluid flow through bristled appendages of small organisms, J. Theor. Biol., 129, 17-39 (1987)
[8] Crespi, B. J.; Carmean, D. A., Ecology and evolution of galling thrips and their allies, Annu. Rev. Entomol., 42, 51-71 (1997)
[9] Dickinson, M. H.; Gotz, K. G., Unsteady aerodynamic performance of model wings at low Reynolds numbers, J. Exp. Biol., 174, 45-64 (1993)
[10] Dickinson, M. H.; Lehmann, F. O., Wing rotation and the aerodynamic basis of insect flight, Science, 284, 1954-1960 (1999)
[11] Ellington, C., The aerodynamics of hovering insect flight. I. The quasi-steady analysis, Philos. Trans. R. Soc. Lond. B: Biol. Sci., 305, 1122, 1-15 (1984)
[12] Ellington, C. P., The aerodynamics of hovering insect flight. III. Kinematics., Philos. Trans. R. Soc. Lond. B: Biol. Sci., 305, 79-113 (1984)
[13] Ellington, C. P., The aerodynamics of hovering insect flight. IV. Aerodynamic mechanisms, Philos. Trans. R. Soc. Lond. B Biol. Sci., 305, 79-113 (1984)
[14] Etnier, S. A.; Vogel, S., Reorientation of daffodil (Narcissus Amaryllidaceae) flowers in wind: drag reduction and torsional flexibility, Am. J. Bot., 87, 29-32 (2000)
[15] Fauci, L. J.; Fogelson, A. L., Truncated newton methods and the modeling of complex immersed elastic structures, Commun. Pure Appl. Math., 46, 6, 787-818 (1993) · Zbl 0741.76103
[16] Fauci, L. J.; Peskin, C. S., A computational model of aquatic animal locomotion, J. Comput. Phys., 77, 1, 85-108 (1988) · Zbl 0641.76140
[17] Griffith, B. E., Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions, Int. J. Numer. Methods Biomed. Eng., 28, 3, 317-345 (2012) · Zbl 1243.92017
[18] Griffith, B. E.; Hornung, R. D., An adaptive, formally second order accurate version of the immersed boundary method, J. Comput. Phys., 223, 1, 10-49 (2007) · Zbl 1163.76041
[19] Griffith, B. E.; Luo, X. Y., Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method, Int. J. Appl. Mech., 1, 1, 137-177 (2009)
[20] Grunbaum, D.; Eyre, D., Functional geometry of ciliated tentacular arrays in active suspension feeders, J. Exp. Biol., 201, 18, 2575-2589 (1998)
[21] Hedrick, T. L.; Cheng, B., Wingbeat time and the scaling of passive rotational damping in flapping flight, Science, 324, 5924, 252-255 (2009)
[22] Herschlag, G.; Miller, L., Reynolds number limits for jet propulsion: a numerical study of simplified jellyfish, J. Theor. Biol., 285, 1, 84-95 (2011) · Zbl 1397.92054
[23] Horridge, G. A., The flight of very small insects, Nature, 178, 1334-1335 (1956)
[24] Koehl, M. A.R., How do benthic organisms withstand moving water, Am. Zool., 24, 57-70 (1984)
[25] Lehmann, F. O.; Pick, S., The aerodynamic benefit of wing-wing interaction depends on stroke trajectory in flapping insect wings, J. Exp. Biol., 210, 1362-1377 (2007)
[26] Lehmann, F. O.; Sane, S. P., The aerodynamic effects of wing-wing interaction in flapping insect wings, J. Exp. Biol., 208, 3075-3092 (2005)
[27] Lighthill, M. J., On the Weis-Fogh mechanism of lift generation, J. Fluid Mech., 60, 1-17 (1973) · Zbl 0271.76092
[28] Lim, S.; Peskin, C. S., Fluid-mechanical interaction of flexible bacterial flagella by the immersed boundary method, Phys. Rev. E, 85, 3 (2012)
[29] Maniyeri, R.; Suh, Y. K., Numerical study on the propulsion of a bacterial flagellum in a viscous fluid using an immersed boundary method, Comput. Fluids, 62, 13-24 (2012) · Zbl 1365.76359
[30] Maxworthy, T., Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part 1. Dynamics of the fling, J. Fluid Mech., 93, 47-63 (1979)
[31] Miller, L. A.; Peskin, C. S., When vortices stick: an aerodynamic transition in tiny insect flight, J. Exp. Biol., 207, 3073-3088 (2004)
[32] Miller, L. A.; Peskin, C. S., “A computational fluid dynamics study of “clap and fling” in the smallest insects, J. Exp. Biol., 208, 17 (2005)
[33] Miller, L. A.; Peskin, C. S., Flexible clap and fling in tiny insect flight, J. Exp. Biol., 212, 3076-3090 (2009)
[34] Miller, L. A.; Santhanakrishnan, A., Reconfiguration and the reduction of vortex-induced vibrations in broad leaves, J. Exp. Biol., 215, 2716-2727 (2012)
[35] Nakata, T.; Liu, H., Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach, Proc. R. Soc. Lond. B: Biol. Sci., 279, 1729, 722-731 (2012)
[36] Nguyen, H.; Karp-Boss, L., Hydrodynamic effects of spines: a different spin, Limnol. Oceanogr.: Fluids Environ., 1, 110-119 (2011)
[37] Osborne, M., Aerodynamics of flapping flight with application to insects, J. Exp. Biol., 28, 2, 221-245 (1951)
[38] Palmer, J. M.; Reddy, D. V.R., New information on the thrips vectors of tomato spotted wilt virus in groundnut crops in India, Int. Arachis Newsl., 7, 24-25 (1990)
[39] Peskin, C. S., The immersed boundary method, Acta Numer., 11, 479-517 (2002) · Zbl 1123.74309
[40] Peskin, C. S.; McQueen, D. M., Fluid Dynamics of the Heart and Its Valves (1996), Prentice-Hall: Prentice-Hall New Jersey
[41] Ramamurti, R.; Sandberg, W. C., A computational investigation of the three-dimensional unsteady aerodynamics of Drosophila hovering and maneuvering, J. Exp. Biol., 210, 5, 881-896 (2007)
[42] Ristroph, L.; Bergou, A. J., Paddling mode of forward flight in insects, Phys. Rev. Lett., 106, 17 (2011)
[43] Sane, S. P., The aerodynamics of insect flight, J. Exp. Biol., 206, 23, 4191-4208 (2003)
[44] Santhanakrishnan, A.; Robinson, A. K., Clap and fling mechanism with interacting porous wings in tiny insect flight, J. Exp. Biol., 217, 21, 3898-3909 (2014)
[45] Spedding, G. R.; Maxworthy, T., The generation of circulation and lift in a rigid two-dimensional fling, J. Fluid Mech., 165, 247-272 (1986)
[46] Sun, M.; Xin, Y., Flows around two airfoils performing fling and subsequent translation and translation and subsequent clap, Acta Mech. Sin., 19, 13-117 (2003)
[47] Sun, M.; Yu, X., Aerodynamic force generation in hovering flight in a tiny insect, AIAA J., 44, 7, 1532-1540 (2006)
[48] Sunada, S.; Takashima, H., Fluid-dynamic characteristics of a bristled wing, J. Exp. Biol., 205, 2737-2744 (2002)
[49] Tytell, E. D.; Hsu, C. Y., Interactions between internal forces, body stiffness, and fluid environment in a neuromechanical model of lamprey swimming, Proc. Natl. Acad. Sci. USA, 107, 46, 19832-19837 (2010)
[50] Usherwood, J. R.; Ellington, C. P., The aerodynamics of revolving wings I. Model hawkmoth wings, J. Exp. Biol., 205, 1547-1564 (2002)
[51] Vo, G. D.; Heys, J., Biofilm deformation in response to fluid flow in capillaries, Biotechnol. Bioeng., 108, 8, 1893-1899 (2011)
[52] Vogel, S., Drag and reconfiguration of broad leaves in high winds, J. Exp. Biol., 40, 941-948 (1989)
[53] Wang, Z. J., Two dimensional mechanism for insect hovering, Phys. Rev. Lett., 85, 10, 2216-2219 (2000)
[54] Wang, Z. J., The role of drag in insect hovering, J. Exp. Biol., 207, 23, 4147-4155 (2004)
[55] Wang, Z. J.; Birch, J. M., Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs robotic wing experiments, J. Exp. Biol., 207, 3, 449-460 (2004)
[56] Weis-Fogh, T., Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production, J. Exp. Biol., 59, 169-230 (1973)
[57] Weis-Fogh, T., Unusual mechanisms for the generation of lift in flying animals, Sci. Am., 233, 5, 81-87 (1975)
[58] Xu, N.; Sun, M., Lateral dynamic flight stability of a model hoverfly in normal and inclined stroke-plane hovering, Bioinspir. Biomim., 9, 3, 036019 (2014)
[59] Zanker, J., The wing beat of Drosophila melanogaster. I. Kinematics, Philos. Trans. R. Soc. Lond. B: Biol. Sci., 327, 1238, 1-18 (1990)
[60] Zheng, L.; Hedrick, T. L., A multi-fidelity modeling approach for evaluation and optimization of wing stroke aerodynamics in flapping flight, J. Fluid Mech., 721, 118-154 (2013) · Zbl 1287.76257
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.