×

On a weakly singular quadratic integral equations of Volterra type in Banach algebras. (English) Zbl 1343.45003

Summary: In this paper, we present existence and uniqueness theorems of nonnegative, asymptotically stable, and ultimately nondecreasing solutions for weakly singular quadratic integral equations of Volterra type in Banach algebras. The concept of the measure of noncompactness and a fixed point theorem due to Darbo acting in a Banach algebra are the main tools in carrying out our proof. An effective numerical example is given to illustrate our theory results.

MSC:

45G05 Singular nonlinear integral equations
47H30 Particular nonlinear operators (superposition, Hammerstein, Nemytskiĭ, Uryson, etc.)

References:

[1] Gripenberg G: On some epidemic models.Q. Appl. Math. 1981, 39:317-327. · Zbl 0476.92017
[2] Brestovanská E: Qualitative behaviour of an integral equation related to some epidemic model.Demonstr. Math. 2003, 36:604-609. · Zbl 1044.45001
[3] Olaru IM: Generalization of an integral equation related to some epidemic models.Carpath. J. Math. 2010, 26:92-96. · Zbl 1224.34205
[4] Olaru IM: An integral equation via weakly Picard operator.Fixed Point Theory 2010, 11:97-106. · Zbl 1196.45009
[5] Brestovanská E, Medveď M: Fixed point theorems of the Banach and Krasnoselskii type for mappings onm-tuple Cartesian product of Banach algebras and systems of generalized Gripenberg’s equations.Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 2012, 51:27-39. · Zbl 1349.45008
[6] Banaś J, Dudek S: The technique of measure of noncompactness in Banach algebras and its appplications to integral equations.Abstr. Appl. Anal. 2013, 2013:1-15. · Zbl 1275.45003
[7] Kilbas, AA; Srivastava, HM; Trujillo, JJ, North-Holland Mathematics Studies 204 (2006), Amsterdam · Zbl 1092.45003
[8] Gaul L, Klein P, Kempfle S: Damping description involving fractional operators.Mech. Syst. Signal Process. 1991, 5:81-88. 10.1016/0888-3270(91)90016-X · doi:10.1016/0888-3270(91)90016-X
[9] Glockle WG, Nonnenmacher TF: A fractional calculus approach of self-similar protein dynamics.Biophys. J. 1995, 68:46-53. 10.1016/S0006-3495(95)80157-8 · doi:10.1016/S0006-3495(95)80157-8
[10] Hilfer R: Applications of Fractional Calculus in Physics. World Scientific, Singapore; 2000. · Zbl 0998.26002 · doi:10.1142/9789812817747
[11] Mainardi, F.; Carpinteri, A. (ed.); Mainardi, F. (ed.), Fractional calculus: some basic problems in continuum and statistical mechanics, 291-348 (1997), Wien · Zbl 0917.73004 · doi:10.1007/978-3-7091-2664-6_7
[12] Metzler F, Schick W, Kilian HG, Nonnenmacher TF: Relaxation in filled polymers: a fractional calculus approach.J. Chem. Phys. 1995, 103:7180-7186. 10.1063/1.470346 · doi:10.1063/1.470346
[13] Tarasov VE: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Berlin; 2010. · Zbl 1214.81004 · doi:10.1007/978-3-642-14003-7
[14] Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, JJ, Series on Complexity, Nonlinearity and Chaos (2012), Singapore
[15] Diethelm, K., Lecture Notes in Mathematics (2010) · Zbl 1215.34001 · doi:10.1007/978-3-642-14574-2
[16] Lakshmikantham V, Leela S, Devi JV: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers, Cambridge; 2009. · Zbl 1188.37002
[17] Miller KS, Ross B: An Introduction to the Fractional Calculus and Differential Equations. Wiley, New York; 1993. · Zbl 0789.26002
[18] Podlubny I: Fractional Differential Equations. Academic Press, San Diego; 1999. · Zbl 0924.34008
[19] Wang J, Zhu C, Fěckan M: Existence, uniqueness and limit property of solutions to quadratic Erdélyi-Kober type integral equations of fractional order.Cent. Eur. J. Phys. 2013, 11:779-791. 10.2478/s11534-013-0219-z · doi:10.2478/s11534-013-0219-z
[20] Banaś, J.; Goebel, K., Lecture Notes in Pure and Applied Mathematics 60 (1980), New York · Zbl 0441.47056
[21] Banaś J, Olszowy L: On a class of measures of noncompactness in Banach algebras and their application to nonlinear integral equations.Z. Anal. Anwend. 2009, 28:475-498. · Zbl 1191.47069
[22] Banaś J: Measures of noncompactness in the space of continuous tempered functions.Demonstr. Math. 1981, 14:127-133. · Zbl 0462.47035
[23] Appell J, Banaś J, Merentes N: Measures of noncompactness in the study of asymptotically stable and ultimately nondecreasing solutions of integral equations.Z. Anal. Anwend. 2010, 29:251-273. · Zbl 1214.47044 · doi:10.4171/ZAA/1408
[24] Banaś J, Rzepka B: On existence and asymptotic stability of solutions of a nonlinear integral equation.J. Math. Anal. Appl. 2003, 284:165-173. 10.1016/S0022-247X(03)00300-7 · Zbl 1029.45003 · doi:10.1016/S0022-247X(03)00300-7
[25] Toledano JA, Benavides TD, Acedo JL: Measures of Noncompactness in Metric Fixed Point Theory. Birkhäuser, Basel; 1997. · Zbl 0885.47021 · doi:10.1007/978-3-0348-8920-9
[26] Prudnikov, AP; Brychkov, YA; Marichev, OI, 1 (1981), Moscow
[27] Appell, J.; Zabrejko, PP, 95 (1990), Cambridge · doi:10.1017/CBO9780511897450
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.