×

The large-scale geometry of locally compact solvable groups. (English) Zbl 1343.22004

The large-scale geometry of locally compact solvable groups originated from the works of M. Gromov in the 80’s and early 90’s. The main attention is focused on invariants for finitely generated groups. The paper under review is devoted to a survey of three types of geometric invariants: the probability of return of symmetric random walks, the cohomological properties as geometric invariants for amenable groups and Dehn functions of solvable groups.
Let \(G\) be a locally compact, compactly generated group, \(\mu\) be a Borel probability measure on \(G\), which can be interpreted as the probability transition of random walk on \(G\) by a process \((X_n)_{n\geq 0}\) starting at the neutral element \(X_0=1_G\), \(X_{n+1} = X_n\xi_n\), where \((\xi_n)_{n\geq 0}\) is an i.i.d. sequence of \(G\)-valued random variables of distribution \(\mu\). The distribution of \(X_n\) is the \(n\)-fold convolution product \(\mu^{(n)} = \mu * \dots * \mu\). Assume that \(\mu\) is symmetric (i.e., \(\mu(U) = \mu(U^{-1})\) for every Borel set \(U\)) and is absolutely continuous with respect to a fixed Haar measure \(\lambda\) on \(G\), that its support is compact and generates \(G\) and that the density of \(\mu\) is continuous. Define the invariant \(\phi(n) = \frac{d\mu^{(2n)}}{d\lambda}(1)\). Following Kesten \(G\) is nonamenable if and only if \(\phi(n)\preceq e^{-n}\). Some interesting results of this invariant \(\phi(n)\) are: the upper bound \(\phi(n) \preceq n^{-D/2}\) is equivalent to the Sobolev inequality \(||f||_{\frac{2D}{D-2}} \leq C ||\nabla f||_2\) (Theorem 3.1). Let \(G\) be a nilpotent connected Lie group of volume growth exponent \(D= \sum_{i\geq 1} i\dim(C^i(G)/C^{i+1}(G))\) for the lower central series \(C^i(G)\), then \(\phi(n) \approx n^{-\frac{D}{2}}\) (Theorem 3.2).
Let \(G\) be a compact second countable group, and \(\pi\) a continuous unitary representation on a Hilbert space \(\mathcal H\). For any \(n\geq 0\) one defines \(n\)-cohomology \(H^n(G,\pi) = Z(G,\pi)/B(G,\pi)\) and reduced \(n\)-cohomology \(\bar{H}^n(G,\pi) = Z(G,\pi)/\overline{B(G,\pi)}\), and says that it has property \(H_{FD}\) (resp. \(H_T\)) if for every unitary representation \(\pi\) with \(\bar{H}^1(G,\pi) \neq 0\), there exists a nonzero subrepresentation of finite dimension (resp. nonzero trivial subrepresentation). Some interesting results related with this cohomological invariant are surveyed: the cohomological dimension over \(\mathbb Q\) is stable under quasi-isometry among the class of all amenable groups (Theorem 4.8) or the Betti numbers are invariant under quasi-isometry among nilpotent groups (Theorem 4.9). If \(\Lambda\) and \(\Gamma\) are quasi-isometric nilpotent groups, then the real cohomology ring \(H^*(\Lambda, \mathbb R)\) and \(H^*(\Gamma,\mathbb R)\) are isomorphic as graded rings (Theorem 4.10).
Finally the Dehn function of solvable groups is introduced as \[ \delta(n) = \sup\{area(w): w \text{ relates of length } \leq n\}, \] where the area of a word \(w\) in the letters of a compact generating subset of a locally compact compactly generated group \(G\) is a product of \(\leq n\) conjugates of relations of lenght \(\leq k \in \mathbb N\). This invariant plays a crucial role in the theory of solvable groups (Theorems 5.5, 5.6, 5.7,5.9, 5.10).
The survey is understandable and clearly presented.

MSC:

22D05 General properties and structure of locally compact groups
20F65 Geometric group theory
20F69 Asymptotic properties of groups
20F16 Solvable groups, supersolvable groups
53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
Full Text: DOI

References:

[1] 1. H. Abels, An example of a finitely presented solvable group, in Homological Group, Theory Proc. Sympos. (Durham, 1977), pp. 205-211, London Math. Soc. Lecture Note Ser. 36 (Cambridge University Press, Cambridge, New York, 1979).
[2] 2. H. Abels, Finite Presentability of S-arithmetic Groups, Compact Presentability of Solvable Groups, Lecture Notes in Mathematics, Vol. 1261 (Springer, 1987). · Zbl 0621.20015
[3] 3. G. A. Alexopoulos, Lower estimate for central probabilities on polycyclic groups, Canad. J. Math.44(5) (1992) 897-910. genRefLink(16, ’S0218196716500120BIB003’, ’10.4153
[4] 4. D. Allcock, An isoperimetric inequality for the Heisenberg groups, Geom. Funct. Anal.8(2) (1998) 219-233. genRefLink(16, ’S0218196716500120BIB004’, ’10.1007
[5] 5. G. Arzhantseva and D. Osin, Solvable groups with polynomial Dehn functions, Trans. Amer. Math. Soc.354(8) (2002) 3329-3348. genRefLink(16, ’S0218196716500120BIB005’, ’10.1090 · Zbl 0998.20040
[6] 6. G. Baumslag, A finitely presented metabelian group with a free abelian derived group of infinite rank, Proc. Amer. Math. Soc.35 (1972) 61-62. genRefLink(16, ’S0218196716500120BIB006’, ’10.1090
[7] 7. M. Barlow, T. Coulhon and A. Grigor’yan, Manifolds and graphs with slow heat kernel decay, Invent. Math.144(3) (2001) 609-649. genRefLink(16, ’S0218196716500120BIB007’, ’10.1007
[8] 8. G. Baumslag, C. F. Miller and H. Short, Isoperimetric inequalities and the homology of groups, Invent. Math.113(3) (1993) 531-560. genRefLink(16, ’S0218196716500120BIB008’, ’10.1007
[9] 9. B. Bekka, P. de la Harpe and A. Valette, Kazhdan’s Property (T). New mathematical monographs: 11 (Cambridge University Press, Cambridge, 2008). genRefLink(16, ’S0218196716500120BIB009’, ’10.1017 · Zbl 1146.22009
[10] 10. A. Bendikov, C. Pittet and R. Sauer, Spectral distribution and L2-isoperimetric profile of Laplace operators on groups, Math. Ann.354 (2012) 43-72. genRefLink(16, ’S0218196716500120BIB010’, ’10.1007
[11] 11. J.-C. Birget, E. Rips and M. Sapir, Isoperimetric and isodiametric functions of groups, Ann. Math.156(2) (2002) 345-466. genRefLink(16, ’S0218196716500120BIB011’, ’10.2307 · Zbl 1026.20021
[12] 12. E. Breuillard, Geometry if groups of polynomial growth and shape of large balls, preprint (2007), arXiv:0704.0095.
[13] 13. M. Bridson, The geometry of the word problem, in Invitations to Geometry and Topology, eds. M. R. Bridson and S. M. Salamon, Oxford Grad. Texts Math. 7 (Oxford University Press, 2002). · Zbl 0996.54507
[14] 14. J. Burillo, Dimension and fundamental groups of asymptotic cones, J. London Math. Soc.59(2) (1999) 557-572. genRefLink(16, ’S0218196716500120BIB014’, ’10.1112
[15] 15. Y. Cornulier, Dimension of asymptotic cones of Lie groups, J. Topology1(2) (2008) 343-361. genRefLink(16, ’S0218196716500120BIB015’, ’10.1112
[16] 16. Y. Cornulier, Asymptotic cones of Lie groups and cone equivalences, Illinois J. Math.55(1) (2011) 237-259. · Zbl 1268.22005
[17] 17. T. Coulhon, Random Walks and Geometry on Infinite Graphs, Lecture notes on analysis on metric spaces, eds. L. Ambrosio and F. Serra Cassano (Scuola Normale Superiere, Pisa 2000), pp. 5-30. · Zbl 1063.60063
[18] 18. T. Coulhon, A. Grigor’yan and C. Pittet, A geometric approach to on-diagonal heat kernel lower bounds on groups, Contemp. Math. 65-99; Ann. Inst. Fourier 51(6) (2001) 1763-1827. · Zbl 1137.58307
[19] 19. T. Coulhon and L. Saloff-Coste, Variétés riemanniennes isométriques à l’infini, Rev. Mat. Iberoamericana11(3) (1995) 687-726. genRefLink(16, ’S0218196716500120BIB019’, ’10.4171
[20] 20. Y. de Cornulier and R. Tessera, Metabelian groups with quadratic Dehn function and Baumslag-Solitar groups, Confluentes Math.2(4) (2010) 431-443. [Abstract] · Zbl 1254.20035
[21] 21. Y. de Cornulier and R. Tessera, Dehn function and asymptotic cones of Abels’ group, J. Topology6(4) (2013) 982-1008. genRefLink(16, ’S0218196716500120BIB021’, ’10.1112
[22] 22. P. Delorme, 1-cohomologie des représentations unitaires des groupes de Lie semisimples et résolubles. produits tensoriels continus de représentations, Bull. Soc. Math. France105 (1977) 281-336. · Zbl 0404.22006
[23] 23. A. Dyubina and I. Polterovich, Explicit constructions of universal R trees and asymptotic geometry of hyperbolic spaces, Bull. London Math. Soc.33 (2001) 727-734. genRefLink(16, ’S0218196716500120BIB023’, ’10.1112
[24] 24. C. Drutu, Quasi-isometry invariants and asymptotic cones, Int. J. Algebra Comput.12(1) (2002) 99-135. [Abstract] genRefLink(128, ’S0218196716500120BIB024’, ’000176892500008’);
[25] 25. C. Drutu, Filling in solvable groups and in lattices in semisimple groups, Topology43(5) (2004) 983-1033. genRefLink(16, ’S0218196716500120BIB025’, ’10.1016
[26] 26. C. Drutu and M. Sapir, Tree-graded spaces and asymptotic cones of groups, Topology44 (2005) 959-1058. genRefLink(16, ’S0218196716500120BIB026’, ’10.1016 · Zbl 1101.20025
[27] 27. F. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson and W. P. Thurston, Word Processing in Groups (A. K. Peters, Boston, 1992). · Zbl 0764.20017
[28] 28. A. Erschler (Dyubina), On isoperimetric profiles of finitely generated groups, Geom. Dedicata100 (2003) 157-171. genRefLink(16, ’S0218196716500120BIB028’, ’10.1023
[29] 29. A. Erschler (Dyubina), Isoperimetry for wreath products of Markov chains and multiplicity of the selfintersections of randowm walks, Probab. Theory Relat. Fields136(4) (2006) 560-586. genRefLink(16, ’S0218196716500120BIB029’, ’10.1007
[30] 30. A. Erschler (Dyubina) and D. Osin, Fundamental groups of asymptotic cones, Topology44(4) (2005) 827-843. genRefLink(16, ’S0218196716500120BIB030’, ’10.1016
[31] 31. B. Farb, The quasi-isometry classification of lattices in semisimple Lie groups, Math. Res. Letta.4 (1997) 705-717. genRefLink(16, ’S0218196716500120BIB031’, ’10.4310
[32] 32. B. Farb and L. Mosher, A rigidity theorem for the solvable Baumslag-Solitar groups, With an appendix by Daryl Cooper, Invent. Math.131(2) (1998) 419-451. genRefLink(16, ’S0218196716500120BIB032’, ’10.1007 · Zbl 0937.22003
[33] 33. B. Farb and L. Mosher, Quasi-isometric rigidity for the solvable Baumslag-Solitar groups II, Invent. Math.137(3) (1999) 613-649. genRefLink(16, ’S0218196716500120BIB033’, ’10.1007
[34] 34. B. Farb and L. Mosher, On the asymptotic geometry of abelian-by-cyclic groups, Acta Math.184(2) (2000) 145-202. genRefLink(16, ’S0218196716500120BIB034’, ’10.1007
[35] 35. A. Eskin, D. Fisher and K. Whyte, Quasi-isometries and Rigidity of Solvable Groups, A. Eskin and K. Whyte, eds. Pure and Applied Mathematics Quarterly, Vol. 3 (2007), pp. 927-947. · Zbl 1167.22007
[36] 36. A. Eskin, D. Fisher and K. Whyte, Coarse differentiation of quasi-isometries I: Spaces not quasi-isometric to Cayley graphs, Ann. Math.176(1) (2012) 221-260. genRefLink(16, ’S0218196716500120BIB036’, ’10.4007
[37] 37. A. Eskin, D. Fisher and K. Whyte, Coarse differentiation of quasi-isometries II: Rigidity for Sol and Lamplighter groups, Ann. Math.177(3) (2013) 869-910. genRefLink(16, ’S0218196716500120BIB037’, ’10.4007
[38] 38. S. M. Gersten, Dehn functions and L1-norms of finite presentations, in Algorithms and Classification in Combinatorial Group Theory, G. Baumslag and C. F. Miller III, eds. MSRI Publications, Vol. 23 (Springer, New York, 1992), pp. 195-224. genRefLink(16, ’S0218196716500120BIB038’, ’10.1007 · Zbl 0805.20026
[39] 39. S. M. Gersten, Isoperimetric and isodiametric functions of fnite presentations, in G. A. Niblo, M. A. Roller, eds. Geometric Group Theory I, Vol. 182 in LMS lecture notes (Cambridge University Press, Cambridge, 1993). genRefLink(16, ’S0218196716500120BIB039’, ’10.1017
[40] 40. S. M. Gersten, Quasi-isometry invariance of cohomological dimension, C. R. Acad. Sci. Paris Sdr. I Math.316 (1993) 411-416. genRefLink(128, ’S0218196716500120BIB040’, ’A1993KT76100003’); · Zbl 0805.20043
[41] 41. S. M. Gersten, D. F. Holt and T. R. Riley, Isoperimetric inequalities for nilpotent groups, Geom. Funct. Anal.13(4) (2003) 795-814. genRefLink(16, ’S0218196716500120BIB041’, ’10.1007
[42] 42. R. Goodman, Nipotent Lie Croups Structure and Applications to Analysis, Lecture Notes in Mathematics, Vol. 562 (Springer, Berlin 1976).
[43] 43. M. Gromov, Groups of polynomial growth and expanding maps, Publ. Math. IHES53 (1981) 53-73. genRefLink(16, ’S0218196716500120BIB043’, ’10.1007 · Zbl 0474.20018
[44] 44. M. Gromov, Hyperbolic groups, in Essays in Group Theory, S. Gersten, eds. (MSRI Publication, Vol. 8, Springer, 1987), pp. 75-265. genRefLink(16, ’S0218196716500120BIB044’, ’10.1007 · Zbl 0634.20015
[45] 45. M. Gromov, Asymptotic invariants of infinite groups, in G. Niblo and M. Roller, eds. Geometric Group Theory II, Vol 182 in LMS lecture notes, Cambridge University Press, Cambridge 1993). · Zbl 0841.20039
[46] 46. M. Gromov, Carnot-Carathéodory spaces seen from within, Sub-Riemannian Geometry, Progr. Mathematics, Vol. 144 (Birkhäuser, Basel, 1996), pp. 79-323. genRefLink(16, ’S0218196716500120BIB046’, ’10.1007 · Zbl 0864.53025
[47] 47. A. Guichardet, CohomoIogie des Groupes TopoIogiques et des Algèbres de Lie, Textes Mathématiques, Vol. 2 (CEDIC, Paris, 1980).
[48] 48. Y. Guivarc’h, Croissance polynômiale et périodes des fonctions harmoniques, Bull. Sc. Math. France101 (1973) 333-379. · Zbl 0294.43003
[49] 49. J. Groves and S. Hermiller, Isoperimetric inequalities for soluble groups, Geom. Dedicata88 (2001) 239-254. genRefLink(16, ’S0218196716500120BIB049’, ’10.1023
[50] 50. P. Hall, The Frattini subgroups of finitely generated groups, Proc. London Math. Soc.11(3) (1961) 327-352. genRefLink(16, ’S0218196716500120BIB050’, ’10.1112 · Zbl 0104.02201
[51] 51. P. Hebisch, On heat kernels on Lie groups, Math. Z.210(4) (1992) 593-605. genRefLink(16, ’S0218196716500120BIB051’, ’10.1007
[52] 52. E. Heintze, On homogeneous manifolds of negative curvature, Math. Ann.211 (1974) 23-34. genRefLink(16, ’S0218196716500120BIB052’, ’10.1007
[53] 53. P. Hebisch and L. Saloff-Coste, Gaussian estimates for Markov chains and random walks on groups, Ann. Prob.21 (1993) 673-709. genRefLink(16, ’S0218196716500120BIB053’, ’10.1214
[54] 54. H. Kesten, Full Banach mean values on countable groups, Math. Scand.71 (1959) 146-156. · Zbl 0092.26704
[55] 55. O. Kharlampovich, A finitely presented solvable group with unsolvable word problem, Izvest. Ak. Nauk, Ser. Mat.45(4) (1981) 852-873. · Zbl 0485.20023
[56] 56. M. Kneser, Erzeugende und relationen verallgemeinerter Einheitengruppen, Crelle’s J.214/215 (1964) 345-349. · Zbl 0141.02603
[57] 57. P. H. Kropholler, On finitely generated soluble groups with no large wreath product sections, Proc. London Math. Soc.49(3) (1984) 155-169. genRefLink(16, ’S0218196716500120BIB057’, ’10.1112 · Zbl 0537.20013
[58] 58. O. Kharlampovich, A. Myasnikov and M. Sapir, Residually finite finitely presented solvable groups, Preprint, 2013. · Zbl 1423.20022
[59] 59. V. Kaimanovich and A. Vershik, Random walks on discrete groups: Boundary and entropy, Ann. Probab.11 (1983) 457-490. genRefLink(16, ’S0218196716500120BIB059’, ’10.1214
[60] 60. J. van Leeuwen (ed), Handbook of Theoretical Computer Science, Vol. A Algorithms and Complexity, (Elsevier Science, B. V., Amsterdam; MIT Press, Cambridge 1990).
[61] 61. E. Leuzinger, On polyhedral retracts and compactifications of locally symmetric spaces, Diff. Geom. Appl.20(3) (2004) 293-318. genRefLink(16, ’S0218196716500120BIB061’, ’10.1016 · Zbl 1052.22008
[62] 62. E. Leuzinger and C. Pittet, Isoperimetric inequalities for lattices in semisimple Lie groups of rank 2, Geom. Funct. Anal.6(3) (1996) 489-511. genRefLink(16, ’S0218196716500120BIB062’, ’10.1007
[63] 63. E. Leuzinger and C. Pittet, On quadratic Dehn functions, Math. Z.248(4) (2004) 725-755. genRefLink(16, ’S0218196716500120BIB063’, ’10.1007 · Zbl 1132.20021
[64] 64. R. J. Lipton and Y. Zalcstein, Word problems solvable in logspace, J. Assoc. Comput. Mach.24 (1977) 522-526. genRefLink(16, ’S0218196716500120BIB064’, ’10.1145
[65] 65. J. McKinsey, The decision problem for some classes of sentences without quantifiers, J. Symbol. Logic8 (1973) 61-76. genRefLink(16, ’S0218196716500120BIB065’, ’10.2307 · Zbl 0063.03864
[66] 66. J. Mayer, J. Nikiel and L. Oversteegen, Universal spaces for R-trees, Trans. AMS334(1) (1992) 411-432. · Zbl 0787.54036
[67] 67. D. Montgomery and L. Zippin, Topological Transformation Groups, Reprint of the 1955 original (Krieger, Huntington, NY, 1974). · Zbl 0323.57023
[68] 68. A. Yu. Olshanskii, D. Osin and M. Sapir, Lacunary hyperbolic groups, Geom. Topol.13 (2009) 2051-2140. genRefLink(16, ’S0218196716500120BIB068’, ’10.2140
[69] 69. A. Yu. Olshanskii and M. V. Sapir. Quadratic isoperimetric functions of the Heisenberg groups, Combin. Proof J. Math. Sci. (New York) 93(6) (1999) 921-927. · Zbl 0941.20034
[70] 70. P. Pansu, Croissance des boules et des géodésiques fermées dans les nilvariétés, Ergodic Theory Dynam. Systems3(3) (1983) 415-445. genRefLink(16, ’S0218196716500120BIB070’, ’10.1017
[71] 71. P. Papasoglu, On the asymptotic cone of groups satisfying a quadratic isoperimetric inequality, J. Differential Geom.44(4) (1996) 789-806. genRefLink(128, ’S0218196716500120BIB071’, ’A1996WU24300003’); · Zbl 0893.20029
[72] 72. C. Pittet, Isoperimetric inequalities for homogeneous nilpotent groups, in R. Charney, M. Davis and M. Shapiro, eds. Geometric Group Theory, volume 3 of Ohio State University (Mathematical Research Institute Publications, 1995), pp. 159-164. genRefLink(16, ’S0218196716500120BIB072’, ’10.1515 · Zbl 0847.20033
[73] 73. C. Pittet, Isoperimetric Inequalities in Nilpotent Groups, J. London Math. Soc.55(2) (1997) 588-600. genRefLink(16, ’S0218196716500120BIB073’, ’10.1112
[74] 74. G. Pólya, Uber eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Strassennetz, Mathematische Annalen83 (1921) 149-160. genRefLink(16, ’S0218196716500120BIB074’, ’10.1007
[75] 75. C. Pittet and L. Saloff-Coste, Amenable Groups, Isoperimetric Profiles and Random Walks, Geometric group theory down under Canberra, 1996, (de Gruyter, Berlin, 1999), pp. 293-316. · Zbl 0934.43001
[76] 76. C. Pittet and L. Saloff-Coste, A survey on the relationships between volume growth, isoperimetry, and the behavior of simple random walk on Cayley graphs, with examples, Preprint, 2001.
[77] 77. C. Pittet and L. Saloff-Coste, On the stability of the behavior of random walks on groups, J. Geom. Anal.10 (2001) 701-726.
[78] 78. C. Pittet and L. Saloff-Coste, On random walks on wreath products, Ann. Prob.30 (2002) 948-977. genRefLink(16, ’S0218196716500120BIB078’, ’10.1214
[79] 79. C. Pittet and L. Saloff-Coste, Random walks on finite rank solvable groups, J. Eur. Math. Soc.5(4) (2003) 313-342. genRefLink(16, ’S0218196716500120BIB079’, ’10.1007
[80] 80. M. S. Raghunathan, Discrete Subgroups of Lie Groups, Springer-Verlag, Berlin 1972). genRefLink(16, ’S0218196716500120BIB080’, ’10.1007 · Zbl 0254.22005
[81] 81. J. Roe, Lectures on Coarse Geometry, Volume 31 of University Lecture Series. American Mathematical Society (Providence, RI, 2003). genRefLink(16, ’S0218196716500120BIB081’, ’10.1090
[82] 82. L. Saloff-Coste, Analysis on Riemannian cocompact covers. In Surveys in Differential Geometry 9, pp. 351-384. Int. Press, Somerville, MA (2004). · Zbl 1082.31006
[83] 83. M. Sapir, Asymptotic invariants, complexity of groups and related problems, Bulletin of Mathematical Sciences1(2) (2011) 277-364. genRefLink(16, ’S0218196716500120BIB083’, ’10.1007
[84] 84. R. Sauer, Homological invariants and quasi-isometry, Geom. Funct. Anal. (GAFA), 16(2) (2006) 476-515. genRefLink(16, ’S0218196716500120BIB084’, ’10.1007
[85] 85. L. Saloff-Coste and T. Zheng, Random walks on free solvable groups, arXiv:1307.5332. · Zbl 1368.20064
[86] 86. Y. Shalom, Harmonic analysis, cohomology, and the large scale geometry of amenable groups, Acta Math.193 (2004) 119-185. genRefLink(16, ’S0218196716500120BIB086’, ’10.1007
[87] 87. R. Tessera, Large scale Sobolev inequalities on metric measure spaces and applications, Rev. Mat. Iberoam.24(3) (2008) 825-864. genRefLink(16, ’S0218196716500120BIB087’, ’10.4171
[88] 88. R. Tessera, Isoperimetric profile and random walks on locally compact solvable groups. Rev. Mat. Iberoam.29(2) (2013) 715-737. genRefLink(16, ’S0218196716500120BIB088’, ’10.4171
[89] 89. N. Th. Varopoulos, A potential theoretic property of soluble groups, Bull. Sci. Math.108 (1983) 263-273. genRefLink(128, ’S0218196716500120BIB089’, ’A1984TW32800002’); · Zbl 0546.60008
[90] 90. N. Th. Varopoulos, Random walks on soluble groups, Bull. Sci. Math.107 (1983) 337-344. genRefLink(128, ’S0218196716500120BIB090’, ’A1983RZ44800001’); · Zbl 0532.60009
[91] 91. N. Th. Varopoulos, Théorie du potentiel sur les groupes nilpotents. C. R. Acad. Sci. Paris Sér. I Math.301 (1985) 143-144. · Zbl 0582.43002
[92] 92. N. Th. Varopoulos, Isoperimetric inequalities and Markov chains, J. Funct. Anal.63 (1985) 215-239. genRefLink(16, ’S0218196716500120BIB092’, ’10.1016
[93] 93. N. Th. Varopoulos, Long range estimates for Markov chains, Bull. Sci. Math.109(2) (1985) 225-252. · Zbl 0583.60063
[94] 94. N. Th. Varopoulos, Théorie du potentiel sur des groupes et des variétés, C. R. Acad. Sci. Paris Ser. I302 (1986) 203-205.
[95] 95. N. Th. Varopoulos, Convolution powers on locally compact groups, Bull. Sci. Math.111(2) (1987) 333-342. · Zbl 0626.22004
[96] 96. N. Th. Varopoulos, Groups of super polynomial growth in Proc, I.C.M. Sattelite Conf. on Harmonic Anal. (Springer, Berlin, 1991), pp. 194-200.
[97] 97. N. Th. Varopoulos, Wiener-Hopf theory and nonunimodular groups, J. Func. Analysis120 (1994) 467-483. genRefLink(16, ’S0218196716500120BIB097’, ’10.1006
[98] 98. N. Th. Varopoulos, L. Saloff-Coste and T. Coulhon, Analysis and Geometry on groups, Cambridge Tracts in Mathematics, Vol. 100 (Cambridge University Press, Cambridge, 1992). · Zbl 0813.22003
[99] 99. S. Waack, On the parallel complexity of linear groups. RAIRO Inform. Theor. Appl.25 (1991) 323-354. genRefLink(128, ’S0218196716500120BIB099’, ’A1991GL31900002’); · Zbl 0789.68074
[100] 100. B. A. F. Wehrfritz, Infinite linear groups, An account of the group-theoretic properties of infinite groups of matrices (Springer-Verlag, New York, 1973). genRefLink(16, ’S0218196716500120BIB100’, ’10.1007 · Zbl 0261.20038
[101] 101. A. Weil, Basic Number Theory, 3rd ed. (Springer-Verlag, Berlin 1995). · Zbl 0823.11001
[102] 102. S. Wenger, Nilpotent groups without exactly polynomial dehn function, J. Topology, 4(1) (2011) 141-160. genRefLink(16, ’S0218196716500120BIB102’, ’10.1112
[103] 103. R. Young, Filling inequalities for nilpotent groups, arXiv:0608174. · Zbl 1343.20045
[104] 104. R. Young, Scaled relators and Dehn functions for nilpotent groups, arXiv:math/0601297.
[105] 105. R. Young, The Dehn function of SL(n, Z), Ann. Math.177 (2013) 969-1027. genRefLink(16, ’S0218196716500120BIB105’, ’10.4007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.