×

Beta-expansions of \(p\)-adic numbers. (English) Zbl 1343.11066

In this paper, the authors deal with beta-expansions in the ring of the \(p\)-adic integers. They characterize the set of numbers with eventually periodic and finite expansions. In particular, they prove that for \(\beta\) a Pisot-Chabauty number, the set of eventually periodic beta-expansions is \(\mathbb Q(\beta)\cap\mathbb Z_p\). A. Bertrand [C. R. Acad. Sci., Paris, Sér. A 285, 419–421 (1977; Zbl 0362.10040)] and K. Schmidt [Bull. Lond. Math. Soc. 12, 269–278 (1980; Zbl 0494.10040)] proved that if \(\beta\) is Pisot, then the set of eventually periodic beta-expansions consists of the non-negative elements of \(\mathbb Q(\beta)\). Schmidt [loc. cit.] proved a partial converse of this statement. The authors prove an equivalent result to Schmidt’s partial converse. They characterize the set of finite beta-expansions for a family of Pisot-Chabauty numbers.

MSC:

11K16 Normal numbers, radix expansions, Pisot numbers, Salem numbers, good lattice points, etc.
11K41 Continuous, \(p\)-adic and abstract analogues
37P20 Dynamical systems over non-Archimedean local ground fields

References:

[1] DOI: 10.1016/S1071-5797(03)00008-X · Zbl 1031.11003 · doi:10.1016/S1071-5797(03)00008-X
[2] DOI: 10.1112/blms/12.4.269 · Zbl 0494.10040 · doi:10.1112/blms/12.4.269
[3] DOI: 10.1016/j.ffa.2005.08.008 · Zbl 1152.11037 · doi:10.1016/j.ffa.2005.08.008
[4] DOI: 10.1007/BF02020331 · Zbl 0079.08901 · doi:10.1007/BF02020331
[5] DOI: 10.1007/BF02020954 · Zbl 0099.28103 · doi:10.1007/BF02020954
[6] DOI: 10.1007/978-3-662-03983-0 · doi:10.1007/978-3-662-03983-0
[7] Boyd, Théorie des nombres (Quebec, PQ, 1987) pp 57– (1989)
[8] Meyer, Algebraic Numbers and Harmonic Analysis (1972) · Zbl 0267.43001
[9] Bertrand, C. R. Acad. Sci. Paris Sér. A–B 285 pp A419– (1977)
[10] Akiyama, Math. Pannon. 18 pp 101– (2007)
[11] DOI: 10.4064/aa129-2-2 · Zbl 1143.11006 · doi:10.4064/aa129-2-2
[12] DOI: 10.1016/j.jnt.2004.02.001 · Zbl 1052.11055 · doi:10.1016/j.jnt.2004.02.001
[13] DOI: 10.1142/S1793042106000619 · Zbl 1157.11004 · doi:10.1142/S1793042106000619
[14] DOI: 10.1017/S0143385700007057 · Zbl 0814.68065 · doi:10.1017/S0143385700007057
[15] DOI: 10.1016/S0019-3577(09)00006-8 · Zbl 1190.11041 · doi:10.1016/S0019-3577(09)00006-8
[16] DOI: 10.1080/10236198.2010.547494 · Zbl 1303.11019 · doi:10.1080/10236198.2010.547494
[17] Akiyama, Osaka J. Math. 45 pp 347– (2008)
[18] DOI: 10.1090/S0025-5718-96-00700-4 · Zbl 0848.11048 · doi:10.1090/S0025-5718-96-00700-4
[19] DOI: 10.4064/aa121-1-2 · Zbl 1142.11055 · doi:10.4064/aa121-1-2
[20] DOI: 10.1007/s10474-005-0221-z · Zbl 1110.11003 · doi:10.1007/s10474-005-0221-z
[21] Akiyama, Number Theory (Eger, Hungary, 1996) pp 9– (1998)
[22] Surer, Math. Pannon. 18 pp 265– (2007)
[23] DOI: 10.1142/S1793042114500389 · Zbl 1318.11008 · doi:10.1142/S1793042114500389
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.