×

On dynamics of \(\ell\)-Volterra quadratic stochastic operators. (English) Zbl 1342.92199

Summary: We introduce a notion of \(\ell\)-Volterra quadratic stochastic operator defined on \((m - 1)\)-dimensional simplex, where \(\{0,1,\dots, m\}\). The \(\ell\)-Volterra operator is a Volterra operator if and only if \(\ell = m\). We study structure of the set of all \(\ell\)-Volterra operators and describe their several fixed and periodic points. For \(m = 2\) and \(3\), we describe behavior of trajectories of \((m - 1)\)-Volterra operators. The paper also contains many remarks with comparisons of \(\ell\)-Volterra operators and Volterra ones.

MSC:

92D25 Population dynamics (general)
47B44 Linear accretive operators, dissipative operators, etc.

References:

[1] R. L. Devaney , An Introduction to Chaotic Dynamical System ( Westview Press , 2003 ) . · Zbl 1025.37001
[2] S. N. Elaydi , Discrete Chaos ( Chapman Hall/CRC , 2000 ) . · Zbl 0945.37010
[3] N. N. Ganikhodjaev, Doklady Math. 61, 321 (2000). genRefLink(128, ’rf3’, ’000089491500003’);
[4] N. N. Ganikhodjaev and R. T. Mukhitdinov, Uzbek Math. 65 (2003).
[5] N. N. Ganikhodjaev and U. A. Rozikov, Regular Chaot. Dynam. 11(4), 467 (2006). genRefLink(16, ’rf5’, ’10.1070
[6] R. N. Ganikhodzhaev, Dokl. Akad. Nauk UzSSR. 1, 3 (1989).
[7] R. N. Ganikhodzhaev, Russian Acad. Sci. Sb. Math. 76, 489 (1993), DOI: 10.1070/SM1993v076n02ABEH003423.
[8] R. N. Ganikhodzhaev, Russian Math. Surv. 48(4), 244 (1992), DOI: 10.1070/RM1993v048n04ABEH001058. genRefLink(16, ’rf8’, ’10.1070
[9] R. N. Ganikhodzhaev, Math. Notes 56, 1125 (1994). genRefLink(16, ’rf9’, ’10.1007
[10] R. N. Ganikhodzhaev and A. M. Dzhurabaev, Uzbek. Mat. Zh. 3, 23 (1998).
[11] R. N. Ganikhodzhaev and A. Z. Karimov, Uzbek. Mat. Zh. 6, 29 (1999).
[12] R. N. Ganikhodzhaev and R. E. Abdirakhmanova, Uzbek. Mat. Zh. 1, 7 (2002).
[13] R. N. Ganikhodzhaev and D. B. Eshmamatova, Vladikavkaz Math. 8, 12 (2006).
[14] R. N. Ganikhodzhaev and A. I. Eshniyazov, Uzbek. Mat. Zh. 3, 29 (2004).
[15] J. Hofbaver and K. Sigmund , The Theory of Evolution and Dynamical Systems ( Cambridge University Press , 1988 ) .
[16] R. D. Jenks, J. Differential Equations 5, 497 (1969), DOI: 10.1016/0022-0396(69)90090-4. genRefLink(16, ’rf16’, ’10.1016
[17] H. Kesten, Adv. Appl. Prob. 2, 1 (1970), DOI: 10.2307/3518344. genRefLink(16, ’rf17’, ’10.2307
[18] H. Kesten, Adv. Appl. Prob. 179 (1970), DOI: 10.2307/1426318.
[19] Yu. I. Lyubich , Mathematical Structures in Population Genetics , Biomathematics 22 ( Springer-Verlag , 1992 ) . genRefLink(16, ’rf19’, ’10.1007 · Zbl 0593.92011
[20] R. C. Robinson , An Introduction to Dynamical Systems: Continues and Discrete ( Pearson Education , 2004 ) .
[21] U. A. Rozikov and N. B. Shamsiddinov, Stoch. Anal. Appl. 27(2), 353 (2009), DOI: 10.1080/07362990802678994. genRefLink(16, ’rf21’, ’10.1080
[22] U. A. Rozikov and U. U. Zhamilov, Math. Notes 83(4), 554 (2008), DOI: 10.1134/S0001434608030280. genRefLink(16, ’rf22’, ’10.1134
[23] U. A. Rozikov and U. U. Zhamilov, Sb. Math. 200(9), 81 (2009).
[24] P. R. Stein and S. M. Ulam, Rozprawy Mat. 39, 1 (1964).
[25] M. I. Zakharevich, Russian Math. Surv. 33, 207 (1978), DOI: 10.1070/RM1978v033n06ABEH003890.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.