×

A geometric method for model reduction of biochemical networks with polynomial rate functions. (English) Zbl 1342.92079

Summary: Model reduction of biochemical networks relies on the knowledge of slow and fast variables. We provide a geometric method, based on the Newton polytope, to identify slow variables of a biochemical network with polynomial rate functions. The gist of the method is the notion of tropical equilibration that provides approximate descriptions of slow invariant manifolds. Compared to extant numerical algorithms such as the intrinsic low-dimensional manifold method, our approach is symbolic and utilizes orders of magnitude instead of precise values of the model parameters. Application of this method to a large collection of biochemical network models supports the idea that the number of dynamical variables in minimal models of cell physiology can be small, in spite of the large number of molecular regulatory actors.

MSC:

92C40 Biochemistry, molecular biology
92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)

References:

[1] Chang CS (1998) On deterministic traffic regulation and service guarantees: a systematic approach by filtering. IEEE Trans Inf Theory 44(3):1097-1110 · Zbl 0908.90123 · doi:10.1109/18.669173
[2] Chiavazzo E, Karlin I (2011) Adaptive simplification of complex multiscale systems. Phys Rev E 83(3):036,706 · doi:10.1103/PhysRevE.83.036706
[3] Clarke EM, Grumberg O, Peled D (1999) Model checking. MIT press, Cambridge
[4] Deuflhard P, Heroth J (1996) Dynamic dimension reduction in ODE models. Springer, Berlin · Zbl 0865.65053 · doi:10.1007/978-3-642-80149-5_4
[5] Dolzmann A, Sturm T (1997) REDLOG: computer algebra meets computer logic. ACM SIGSAM Bullet 31(2):2-9 · doi:10.1145/261320.261324
[6] Feret J, Danos V, Krivine J, Harmer R, Fontana W (2009) Internal coarse-graining of molecular systems. Proc Natl Acad Sci 106(16):6453-6458. doi:10.1073/pnas.0809908106 · doi:10.1073/pnas.0809908106
[7] Gawrilow E, Joswig M (2000) Polymake: a framework for analyzing convex polytopes. Polytopes Comb Comput. doi:10.1007/978-3-0348-8438-9_2 · Zbl 0960.68182
[8] Gorban A, Karlin I (2005) Invariant manifolds for physical and chemical kinetics. Lect Notes Phys 660. Springer, Berlin · Zbl 1086.82009
[9] Gorban A, Radulescu O (2008) Dynamic and static limitation in reaction networks, revisited. In: Guy DW, Marin B, Yablonsky GS (eds) Advances in chemical engineering-mathematics in chemical kinetics and engineering. Elsevier. Adv Chem Eng 34:103-173. doi:10.1016/S0065-2377(08)00002-1 · Zbl 0954.35144
[10] Gorban AN, Radulescu O (2007) Dynamical robustness of biological networks with hierarchical distribution of time scales. IET Syst Biol 1(4):238-246. doi:10.1049/iet-syb:20060083 · doi:10.1049/iet-syb:20060083
[11] Gorban AN, Radulescu O, Zinovyev AY (2010) Asymptotology of chemical reaction networks. Chem Eng Sci 65(7):2310-2324. doi:10.1016/j.ces.2009.09.005 (International symposium on mathematics in chemical kinetics and engineering) · doi:10.1016/j.ces.2009.09.005
[12] Gorban AN, Shahzad M (2011) The Michaelis-Menten-Stueckelberg theorem. Entropy 13(5):966-1019 · Zbl 1303.92152 · doi:10.3390/e13050966
[13] Gurobi Optimization: Gurobi optimizer reference manual (2012). http://www.gurobi.com
[14] Haller G, Sapsis T (2010) Localized instability and attraction along invariant manifolds. SIAM J Appl Dyn Syst 9(2):611-633 · Zbl 1210.37019 · doi:10.1137/08074324X
[15] Henk M, Richter-Gebert J, Ziegler GM (2004) Basic properties of convex polytopes. In: Goodman JE, O’Rourke (eds) Handbook of discrete and computational geometry. Chapman & Hall/CRC, Boca Raton, p 355 · Zbl 0911.52007
[16] Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U (2006) COPASI-a complex pathway simulator. Bioinformatics 22(24):3067-3074. doi:10.1093/bioinformatics/btl485 · doi:10.1093/bioinformatics/btl485
[17] Lam S, Goussis D (1994) The CSP method for simplifying kinetics. Int J Chem Kinet 26(4):461-486 · doi:10.1002/kin.550260408
[18] Le Novere N, Bornstein B, Broicher A, Courtot M, Donizelli M, Dharuri H, Li L, Sauro H, Schilstra M, Shapiro B, Snoep JL, Hucka M (2006) BioModels database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res 34(suppl 1):D689-D691. doi:10.1093/nar/gkj092 · doi:10.1093/nar/gkj092
[19] Litvinov G (2007) Maslov dequantization, idempotent and tropical mathematics: a brief introduction. J Math Sci 140(3):426-444 · doi:10.1007/s10958-007-0450-5
[20] Maas U, Pope SB (1992) Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space. Combust Flame 88(3):239-264 · doi:10.1016/0010-2180(92)90034-M
[21] Maclagan D, Sturmfels B (2015) Introduction to tropical geometry. American Mathematical Society, Providence · Zbl 1321.14048
[22] Meiske W (1978) An approximate solution of the Michaelis-Menten mechanism for quasi-steady and state quasi-equilibrium. Math Biosci 42(1):63-71 · Zbl 0406.92012 · doi:10.1016/0025-5564(78)90007-X
[23] Meshkat N, Eisenberg M, DiStefano JJ (2009) An algorithm for finding globally identifiable parameter combinations of nonlinear ode models using Gröbner bases. Math Biosci 222(2):61-72 · Zbl 1179.93066 · doi:10.1016/j.mbs.2009.08.010
[24] Millán MP, Dickenstein A, Shiu A, Conradi C (2012) Chemical reaction systems with toric steady states. Bullet Math Biol 74(5):1027-1065 · Zbl 1251.92016 · doi:10.1007/s11538-011-9685-x
[25] Noel V, Grigoriev D, Vakulenko S, Radulescu O (2012) Tropical geometries and dynamics of biochemical networks application to hybrid cell cycle models. In: Feret J, Levchenko A (eds) Proceedings of the 2nd international workshop on static analysis and systems biology (SASB 2011). Electron Notes Theor Comput Sci 284:75-91. Elsevier · Zbl 1283.92043
[26] Noel V, Grigoriev D, Vakulenko S, Radulescu O (2014) Tropicalization and tropical equilibration of chemical reactions. In: Litvinov GL, Sergeev SN (eds) Tropical and idempotent mathematics and applications, Contemporary Mathematics, vol. 616. American Mathematical Society, Providence, pp 261-275. doi:10.1090/conm/616/12316 · Zbl 1320.92091
[27] Pachter L, Sturmfels B (2004) Tropical geometry of statistical models. Proc Natl Acad Sci USA 101(46):16,132 · Zbl 1135.62302 · doi:10.1073/pnas.0406010101
[28] Radulescu O, Gorban AN, Zinovyev A, Lilienbaum A (2008) Robust simplifications of multiscale biochemical networks. BMC Syst Biol 2(1):86. doi:10.1186/1752-0509-2-86 · doi:10.1186/1752-0509-2-86
[29] Radulescu O, Gorban AN, Zinovyev A, Noel V (2012) Reduction of dynamical biochemical reactions networks in computational biology. Front Genet 3:131. doi:10.3389/fgene.2012.00131 · doi:10.3389/fgene.2012.00131
[30] Radulescu O, Vakulenko S, Grigoriev D (2015) Model reduction of biochemical reactions networks by tropical analysis methods. Math Model Nat Phenom 10(3):124-138. doi:10.1051/mmnp/201510310 · Zbl 1369.92047 · doi:10.1051/mmnp/201510310
[31] Rowley CW, Marsden JE (2000) Reconstruction equations and the Karhunen-Loève expansion for systems with symmetry. Phys D Nonlinear Phenom 142(1):1-19 · Zbl 0954.35144 · doi:10.1016/S0167-2789(00)00042-7
[32] Samal SS, Errami H, Weber A (2012) PoCaB: a software infrastructure to explore algebraic methods for bio-chemical reaction networks. In: Gerdt VP, Koepf W, Mayr EW, Vorozhtsov EV (eds) Computer algebra in scientific computing. Lecture Notes in Computer Science, vol. 7442, pp. 294-307. Springer, Berlin. doi:10.1007/978-3-642-32973-9_25 · Zbl 1373.92002
[33] Samal SS, Grigoriev D, Fröhlich H, Radulescu O (2015) Analysis of reaction network systems using tropical geometry. In: Gerdt VP, Koepf W, Seiler WM, Vorozhtsov EV (eds) Computer algebra in scientific computing—17th international workshop (CASC 2015), Lecture Notes in Computer Science. Springer, Aachen, vol. 9301, pp. 422-437. doi:10.1007/978-3-319-24021-3_31 · Zbl 1400.92201
[34] Savageau M, Voit E (1987) Recasting nonlinear differential equations as S-systems: a canonical nonlinear form. Math Biosci 87(1):83-115 · Zbl 0631.34015 · doi:10.1016/0025-5564(87)90035-6
[35] Savageau MA, Coelho PM, Fasani RA, Tolla DA, Salvador A (2009) Phenotypes and tolerances in the design space of biochemical systems. Proc Natl Acad Sci 106(16):6435-6440 · doi:10.1073/pnas.0809869106
[36] Segel LA (1988) On the validity of the steady state assumption of enzyme kinetics. Bullet Math Biol 50(6):579-593 · Zbl 0653.92006 · doi:10.1007/BF02460092
[37] Segel LA, Slemrod M (1989) The quasi-steady-state assumption: a case study in perturbation. SIAM Rev 31(3):446-477 · Zbl 0679.34066 · doi:10.1137/1031091
[38] Simon I (1988) Recognizable sets with multiplicities in the tropical semiring. In: Chytil MP, Koubek V, Janiga L (eds) Mathematical foundations of computer science. Lecture Notes in Computer Science, vol. 324. Springer, Berlin, pp 107-120 · Zbl 0656.68086
[39] Soliman S, Fages F, Radulescu O (2014) A constraint solving approach to model reduction by tropical equilibration. Algorithms Mol Biol 9(1):24. doi:10.1186/s13015-014-0024-2
[40] Sturmfels B (2002) Solving systems of polynomial equations. CBMS Regional Conference Series in Math, no. 97, American Mathematical Society, Providence · Zbl 1101.13040
[41] Surovtsova I, Simus N, Lorenz T, König A, Sahle S, Kummer U (2009) Accessible methods for the dynamic time-scale decomposition of biochemical systems. Bioinformatics 25(21):2816-2823. doi:10.1093/bioinformatics/btp451 · Zbl 1162.35426 · doi:10.1093/bioinformatics/btp451
[42] Tikhonov AN (1952) Systems of differential equations containing small parameters in the derivatives. Matematicheskii Sbornik 73(3):575-586 · Zbl 0048.07101
[43] Tyson JJ (1991) Modeling the cell division cycle: cdc2 and cyclin interactions. Proc Natl Acad Sci 88(16):7328-7332 · doi:10.1073/pnas.88.16.7328
[44] Weber A, Sturm T, Abdel-Rahman EO (2011) Algorithmic global criteria for excluding oscillations. Bullet Math Biol 73(4):899-916. doi:10.1007/s11538-010-9618-0 · Zbl 1214.92002 · doi:10.1007/s11538-010-9618-0
[45] Weispfenning V (1988) The complexity of linear problems in fields. J Symb Comput 5(1&2):3-27 · Zbl 0646.03005 · doi:10.1016/S0747-7171(88)80003-8
[46] Zobeley J, Lebiedz D, Kammerer J, Ishmurzin A, Kummer U (2005) A new time-dependent complexity reduction method for biochemical systems. In: Priami C et al. (eds) Transactions on computational systems biology I. Lecture Notes in Computer Science (Lecture Notes in Bioinformatics) 3380. Springer, Berlin, pp 90-110. doi:10.1007/b107357 · Zbl 1117.92309
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.