×

Cool horizons lead to information loss. (English) Zbl 1342.83344

Summary: There are two evidences for information loss during black hole evaporation: (i) a pure state evolves to a mixed state and (ii) the map from the initial state to final state is non-invertible. Any proposed resolution of the information paradox must address both these issues. The firewall argument focuses only on the first and this leads to order one deviations from the Unruh vacuum for maximally entangled black holes. The nature of the argument does not extend to black holes in pure states. It was shown by Avery, Puhm and the author that requiring the initial state to final state map to be invertible mandates structure at the horizon even for pure states. The proof works if black holes can be formed in generic states and in this paper we show that this is indeed the case. We also demonstrate how models proposed by Susskind, Papadodimas et al. and Maldacena et al. end up making the initial to final state map non-invertible and thus make the horizon ”cool” at the cost of unitarity.

MSC:

83E30 String and superstring theories in gravitational theory
83C57 Black holes
83C47 Methods of quantum field theory in general relativity and gravitational theory

References:

[1] S. Hawking, Particle creation by black holes, Commun. Math. Phys.43 (1975) 199 [Erratum ibid.46 (1976) 206] [INSPIRE]. · Zbl 1378.83040
[2] D.N. Page, Average entropy of a subsystem, Phys. Rev. Lett.71 (1993) 1291 [gr-qc/9305007] [INSPIRE]. · Zbl 0972.81504 · doi:10.1103/PhysRevLett.71.1291
[3] S. Sen, Average entropy of a subsystem, Phys. Rev. Lett.77 (1996) 1 [hep-th/9601132] [INSPIRE]. · doi:10.1103/PhysRevLett.77.1
[4] S.D. Mathur, The information paradox: a pedagogical introduction, Class. Quant. Grav.26 (2009) 224001 [arXiv:0909.1038] [INSPIRE]. · Zbl 1181.83129 · doi:10.1088/0264-9381/26/22/224001
[5] A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black holes: complementarity or firewalls?, JHEP02 (2013) 062 [arXiv:1207.3123] [INSPIRE]. · Zbl 1342.83121 · doi:10.1007/JHEP02(2013)062
[6] S.G. Avery, B.D. Chowdhury and A. Puhm, Unitarity and fuzzball complementarity: ‘Alice fuzzes but may not even know it!’, JHEP09 (2013) 012 [arXiv:1210.6996] [INSPIRE]. · doi:10.1007/JHEP09(2013)012
[7] B. Czech, J.L. Karczmarek, F. Nogueira and M. Van Raamsdonk, Rindler quantum gravity, Class. Quant. Grav.29 (2012) 235025 [arXiv:1206.1323] [INSPIRE]. · Zbl 1258.83029 · doi:10.1088/0264-9381/29/23/235025
[8] R. Bousso, Quantum mechanics vs. the equivalence principle. Black hole horizons and quantum information, talk at Black hole horizons and quantum information, http://cds.cern.ch/record/1532382, CERN, Geneva Switzerland (2013).
[9] A. Almheiri, D. Marolf, J. Polchinski, D. Stanford and J. Sully, An apologia for firewalls, JHEP09 (2013) 018 [arXiv:1304.6483] [INSPIRE]. · doi:10.1007/JHEP09(2013)018
[10] L. Susskind, The transfer of entanglement: the case for firewalls, arXiv:1210.2098 [INSPIRE].
[11] K. Papadodimas and S. Raju, An infalling observer in AdS/CFT, arXiv:1211.6767 [INSPIRE]. · Zbl 1246.81177
[12] G. ’t Hooft, Dimensional reduction in quantum gravity, gr-qc/9310026 [INSPIRE]. · Zbl 0663.47007
[13] W. Zurek, Entropy evaporated by a black hole, Phys. Rev. Lett.49 (1982) 1683 [INSPIRE]. · doi:10.1103/PhysRevLett.49.1683
[14] J. Maldacena and L. Susskind, Cool horizons for entangled black holes, arXiv:1306.0533 [INSPIRE]. · Zbl 1338.83057
[15] D. Marolf and J. Polchinski, Gauge/gravity duality and the black hole interior, arXiv:1307.4706 [INSPIRE]. · Zbl 1388.83482
[16] D.A. Lowe, J. Polchinski, L. Susskind, L. Thorlacius and J. Uglum, Black hole complementarity versus locality, Phys. Rev.D 52 (1995) 6997 [hep-th/9506138] [INSPIRE].
[17] S.B. Giddings and W.M. Nelson, Quantum emission from two-dimensional black holes, Phys. Rev.D 46 (1992) 2486 [hep-th/9204072] [INSPIRE].
[18] S.G. Avery, Qubit models of black hole evaporation, JHEP01 (2013) 176 [arXiv:1109.2911] [INSPIRE]. · Zbl 1342.83125 · doi:10.1007/JHEP01(2013)176
[19] S.L. Braunstein, S. Pirandola and K. Życzkowski, Entangled black holes as ciphers of hidden information, Phys. Rev. Lett.110 (2013) 101301 [arXiv:0907.1190] [INSPIRE]. · doi:10.1103/PhysRevLett.110.101301
[20] S.G. Avery and B.D. Chowdhury, Firewalls in AdS/CFT, arXiv:1302.5428 [INSPIRE]. · Zbl 1333.83035
[21] S. Hawking, Black holes and thermodynamics, Phys. Rev.D 13 (1976) 191 [INSPIRE].
[22] B.D. Chowdhury and A. Virmani, Modave lectures on fuzzballs and emission from the D1-D5 system, arXiv:1001.1444 [INSPIRE].
[23] S. Giusto, S.D. Mathur and A. Saxena, Dual geometries for a set of 3-charge microstates, Nucl. Phys.B 701 (2004) 357 [hep-th/0405017] [INSPIRE]. · Zbl 1124.81306 · doi:10.1016/j.nuclphysb.2004.09.001
[24] G.T. Horowitz and A. Strominger, Counting states of near extremal black holes, Phys. Rev. Lett.77 (1996) 2368 [hep-th/9602051] [INSPIRE]. · doi:10.1103/PhysRevLett.77.2368
[25] S.D. Mathur, The quantum structure of black holes, Class. Quant. Grav.23 (2006) R115 [hep-th/0510180] [INSPIRE]. · Zbl 1101.83032 · doi:10.1088/0264-9381/23/11/R01
[26] S.D. Mathur, The fuzzball proposal for black holes: an elementary review, Fortsch. Phys.53 (2005) 793 [hep-th/0502050] [INSPIRE]. · Zbl 1116.83300 · doi:10.1002/prop.200410203
[27] I. Bena and N.P. Warner, One ring to rule them all… And in the darkness bind them?, Adv. Theor. Math. Phys.9 (2005) 667 [hep-th/0408106] [INSPIRE]. · Zbl 1129.83018 · doi:10.4310/ATMP.2005.v9.n5.a1
[28] K. Skenderis and M. Taylor, The fuzzball proposal for black holes, Phys. Rept.467 (2008) 117 [arXiv:0804.0552] [INSPIRE]. · doi:10.1016/j.physrep.2008.08.001
[29] V. Balasubramanian, J. de Boer, S. El-Showk and I. Messamah, Black holes as effective geometries, Class. Quant. Grav.25 (2008) 214004 [arXiv:0811.0263] [INSPIRE]. · Zbl 1152.83303 · doi:10.1088/0264-9381/25/21/214004
[30] S.D. Mathur and D. Turton, The flaw in the firewall argument, arXiv:1306.5488 [INSPIRE]. · Zbl 1323.83023
[31] S.L. Braunstein and A.K. Pati, Quantum information cannot be completely hidden in correlations: implications for the black-hole information paradox, Phys. Rev. Lett.98 (2007) 080502 [gr-qc/0603046] [INSPIRE]. · Zbl 1228.83062 · doi:10.1103/PhysRevLett.98.080502
[32] M. Van Raamsdonk, Evaporating firewalls, arXiv:1307.1796 [INSPIRE]. · Zbl 1333.83117
[33] J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP04 (2003) 021 [hep-th/0106112] [INSPIRE]. · doi:10.1088/1126-6708/2003/04/021
[34] R. Bousso, Complementarity is not enough, Phys. Rev.D 87 (2013) 124023 [arXiv:1207.5192] [INSPIRE].
[35] Takahashi, Thermo field dynamics, Int. J. Mod. Phys.B 10 (1996) 1755 [INSPIRE]. · Zbl 1229.81284
[36] W. Israel, Thermo field dynamics of black holes, Phys. Lett.A 57 (1976) 107 [INSPIRE].
[37] A. Sen, private communications.
[38] A. Sen, Logarithmic corrections from semi-classical gravity, talk at the Indian Strings Meet, Puri India (2012).
[39] I. Bena and N.P. Warner, Black holes, black rings and their microstates, Lect. Notes Phys.755 (2008) 1 [hep-th/0701216] [INSPIRE]. · Zbl 1155.83301 · doi:10.1007/978-3-540-79523-0_1
[40] I. Bena, N. Bobev, C. Ruef and N.P. Warner, Entropy enhancement and black hole microstates, Phys. Rev. Lett.105 (2010) 231301 [arXiv:0804.4487] [INSPIRE]. · doi:10.1103/PhysRevLett.105.231301
[41] I. Bena, N. Bobev, S. Giusto, C. Ruef and N.P. Warner, An infinite-dimensional family of black-hole microstate geometries, JHEP03 (2011) 022 [Erratum ibid.04 (2011) 059] [arXiv:1006.3497] [INSPIRE]. · Zbl 1250.81078
[42] I. Bena, J. de Boer, M. Shigemori and N.P. Warner, Double, double supertube bubble, JHEP10 (2011) 116 [arXiv:1107.2650] [INSPIRE]. · Zbl 1303.81144 · doi:10.1007/JHEP10(2011)116
[43] I. Bena, S. Giusto, M. Shigemori and N.P. Warner, Supersymmetric solutions in six dimensions: a linear structure, JHEP03 (2012) 084 [arXiv:1110.2781] [INSPIRE]. · Zbl 1309.81197 · doi:10.1007/JHEP03(2012)084
[44] B.E. Niehoff and N.P. Warner, Doubly-fluctuating BPS solutions in six dimensions, arXiv:1303.5449 [INSPIRE].
[45] M. Shigemori, Perturbative 3-charge microstate geometries in six dimensions, arXiv:1307.3115 [INSPIRE]. · Zbl 1342.83507
[46] M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav.42 (2010) 2323 [Int. J. Mod. Phys.D 19 (2010) 2429] [arXiv:1005.3035] [INSPIRE]. · Zbl 1200.83052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.