×

Giant D5 brane holographic Hall state. (English) Zbl 1342.81755


MSC:

81V70 Many-body theory; quantum Hall effect

References:

[1] A. Karch and L. Randall, Open and closed string interpretation of SUSY CFT’s on branes with boundaries, JHEP06 (2001) 063 [hep-th/0105132] [INSPIRE]. · doi:10.1088/1126-6708/2001/06/063
[2] A. Karch and L. Randall, Locally localized gravity, JHEP05 (2001) 008 [hep-th/0011156] [INSPIRE]. · doi:10.1088/1126-6708/2001/05/008
[3] S. Sethi, The matrix formulation of type IIB five-branes, Nucl. Phys.B 523 (1998) 158 [hep-th/9710005] [INSPIRE]. · Zbl 1031.81619 · doi:10.1016/S0550-3213(98)00302-2
[4] A. Kapustin and S. Sethi, The Higgs branch of impurity theories, Adv. Theor. Math. Phys.2 (1998) 571 [hep-th/9804027] [INSPIRE]. · Zbl 0967.81050
[5] O. DeWolfe, D.Z. Freedman and H. Ooguri, Holography and defect conformal field theories, Phys. Rev.D 66 (2002) 025009 [hep-th/0111135] [INSPIRE].
[6] J. Erdmenger, Z. Guralnik and I. Kirsch, Four-dimensional superconformal theories with interacting boundaries or defects, Phys. Rev.D 66 (2002) 025020 [hep-th/0203020] [INSPIRE].
[7] V.G. Filev, C.V. Johnson and J.P. Shock, Universal holographic chiral dynamics in an external magnetic field, JHEP08 (2009) 013 [arXiv:0903.5345] [INSPIRE]. · doi:10.1088/1126-6708/2009/08/013
[8] R.C. Myers and M.C. Wapler, Transport properties of holographic defects, JHEP12 (2008) 115 [arXiv:0811.0480] [INSPIRE]. · Zbl 1329.81321 · doi:10.1088/1126-6708/2008/12/115
[9] N. Evans and E. Threlfall, Chemical potential in the gravity dual of a 2+1 dimensional system, Phys. Rev.D 79 (2009) 066008 [arXiv:0812.3273] [INSPIRE].
[10] V.G. Filev, Hot defect superconformal field theory in an external magnetic field, JHEP11 (2009) 123 [arXiv:0910.0554] [INSPIRE]. · doi:10.1088/1126-6708/2009/11/123
[11] N. Evans, A. Gebauer, K.-Y. Kim and M. Magou, Holographic description of the phase diagram of a chiral symmetry breaking gauge theory, JHEP03 (2010) 132 [arXiv:1002.1885] [INSPIRE]. · Zbl 1271.81174 · doi:10.1007/JHEP03(2010)132
[12] K. Jensen, A. Karch, D.T. Son and E.G. Thompson, Holographic Berezinskii-Kosterlitz-Thouless transitions, Phys. Rev. Lett.105 (2010) 041601 [arXiv:1002.3159] [INSPIRE]. · doi:10.1103/PhysRevLett.105.041601
[13] N. Evans, A. Gebauer, K.-Y. Kim and M. Magou, Phase diagram of the D3/D5 system in a magnetic field and a BKT transition, Phys. Lett.B 698 (2011) 91 [arXiv:1003.2694] [INSPIRE].
[14] S.S. Pal, Quantum phase transition in a Dp-Dq system, Phys. Rev.D 82 (2010) 086013 [arXiv:1006.2444] [INSPIRE].
[15] N. Evans, K. Jensen and K.-Y. Kim, Non mean-field quantum critical points from holography, Phys. Rev.D 82 (2010) 105012 [arXiv:1008.1889] [INSPIRE].
[16] G. Grignani, N. Kim and G.W. Semenoff, D3-D5 holography with flux, Phys. Lett.B 715 (2012) 225 [arXiv:1203.6162] [INSPIRE].
[17] G. Grignani, N. Kim and G.W. Semenoff, D7-anti-D7 bilayer: holographic dynamical symmetry breaking, Phys. Lett.B 722 (2013) 360 [arXiv:1208.0867] [INSPIRE]. · Zbl 1306.81059
[18] K. Nagasaki and S. Yamaguchi, Expectation values of chiral primary operators in holographic interface CFT, Phys. Rev.D 86 (2012) 086004 [arXiv:1205.1674] [INSPIRE].
[19] C. Kristjansen, G.W. Semenoff and D. Young, Chiral primary one-point functions in the D3-D7 defect conformal field theory, JHEP01 (2013) 117 [arXiv:1210.7015] [INSPIRE]. · Zbl 1342.81503 · doi:10.1007/JHEP01(2013)117
[20] D.K. Brattan, R.A. Davison, S.A. Gentle and A. O’Bannon, Collective excitations of holographic quantum liquids in a magnetic field, JHEP11 (2012) 084 [arXiv:1209.0009] [INSPIRE]. · doi:10.1007/JHEP11(2012)084
[21] K.G. Klimenko, Three-dimensional Gross-Neveu model in an external magnetic field, Theor. Math. Phys.89 (1992) 1161 [INSPIRE]. · doi:10.1007/BF01015908
[22] V.P. Gusynin, V.A. Miransky and I.A. Shovkovy, Catalysis of dynamical flavor symmetry breaking by a magnetic field in (2+1)-dimensions, Phys. Rev. Lett.73 (1994) 3499 [Erratum ibid.76 (1996) 1005] [hep-ph/9405262] [INSPIRE].
[23] V.P. Gusynin, V.A. Miransky and I.A. Shovkovy, Dynamical flavor symmetry breaking by a magnetic field in (2+1)-dimensions, Phys. Rev.D 52 (1995) 4718 [hep-th/9407168] [INSPIRE].
[24] G.W. Semenoff, I.A. Shovkovy and L.C.R. Wijewardhana, Phase transition induced by a magnetic field, Mod. Phys. Lett.A 13 (1998) 1143 [hep-ph/9803371] [INSPIRE].
[25] G.W. Semenoff, I.A. Shovkovy and L.C.R. Wijewardhana, Universality and the magnetic catalysis of chiral symmetry breaking, Phys. Rev.D 60 (1999) 105024 [hep-th/9905116] [INSPIRE].
[26] G.W. Semenoff and F. Zhou, Magnetic catalysis and quantum Hall ferromagnetism in weakly coupled graphene, JHEP07 (2011) 037 [arXiv:1104.4714] [INSPIRE]. · Zbl 1298.82086 · doi:10.1007/JHEP07(2011)037
[27] S. Bolognesi and D. Tong, Magnetic catalysis in AdS4, Class. Quant. Grav.29 (2012) 194003 [arXiv:1110.5902] [INSPIRE]. · Zbl 1254.83028 · doi:10.1088/0264-9381/29/19/194003
[28] J. Erdmenger, V.G. Filev and D. Zoakos, Magnetic catalysis with massive dynamical flavours, JHEP08 (2012) 004 [arXiv:1112.4807] [INSPIRE]. · doi:10.1007/JHEP08(2012)004
[29] S. Bolognesi, J.N. Laia, D. Tong and K. Wong, A gapless hard wall: magnetic catalysis in bulk and boundary, JHEP07 (2012) 162 [arXiv:1204.6029] [INSPIRE]. · doi:10.1007/JHEP07(2012)162
[30] I.A. Shovkovy, Magnetic catalysis: a review, Lect. Notes Phys.871 (2013) 13 [arXiv:1207.5081] [INSPIRE]. · doi:10.1007/978-3-642-37305-3_2
[31] M. Blake, S. Bolognesi, D. Tong and K. Wong, Holographic dual of the lowest Landau level, JHEP12 (2012) 039 [arXiv:1208.5771] [INSPIRE]. · doi:10.1007/JHEP12(2012)039
[32] V.G. Filev and M. Ihl, Flavoured large-N gauge theory on a compact space with an external magnetic field, JHEP01 (2013) 130 [arXiv:1211.1164] [INSPIRE]. · Zbl 1342.81280 · doi:10.1007/JHEP01(2013)130
[33] R.C. Myers, Dielectric branes, JHEP12 (1999) 022 [hep-th/9910053] [INSPIRE]. · Zbl 0958.81091 · doi:10.1088/1126-6708/1999/12/022
[34] C.G. Callan and J.M. Maldacena, Brane death and dynamics from the Born-Infeld action, Nucl. Phys.B 513 (1998) 198 [hep-th/9708147] [INSPIRE]. · Zbl 0958.81105 · doi:10.1016/S0550-3213(97)00700-1
[35] H.A. Fertig, Energy spectrum of a layered system in a strong magnetic field, Phys. Rev.B 40 (1989) 1087.
[36] T. Jungwirth and A.H. MacDonald, Pseudospin anisotropy classification of quantum Hall ferromagnets, Phys. Rev.B 63 (2001) 035305 [cond-mat/0003430].
[37] Z.F. Ezawa and K. Hasebe, Interlayer exchange interactions, SU(4) soft waves and skyrmions in bilayer quantum Hall ferromagnets, Phys. Rev.B 65 (2002) 075311 [cond-mat/0104448] [INSPIRE].
[38] S.Q. Murphy, J.P. Eisenstein, G.S. Boebinger, L.W. Pfeiffer and K.W. West, Many-body integer quantum Hall effect: evidence for new phase transitions, Phys. Rev. Lett.72 (1994) 728. · doi:10.1103/PhysRevLett.72.728
[39] S.R. Coleman and B.R. Hill, No more corrections to the topological mass term in QED in three-dimensions, Phys. Lett.B 159 (1985) 184 [INSPIRE].
[40] G.W. Semenoff, P. Sodano and Y.-S. Wu, Renormalization of the statistics parameter in three-dimensional electrodynamics, Phys. Rev. Lett.62 (1989) 715 [INSPIRE]. · doi:10.1103/PhysRevLett.62.715
[41] J.D. Lykken, J. Sonnenschein and N. Weiss, The theory of anyonic superconductivity: a review, Int. J. Mod. Phys.A 6 (1991) 5155 [INSPIRE].
[42] A.J. Niemi and G.W. Semenoff, Axial anomaly induced fermion fractionization and effective gauge theory actions in odd dimensional space-times, Phys. Rev. Lett.51 (1983) 2077 [INSPIRE]. · doi:10.1103/PhysRevLett.51.2077
[43] A.N. Redlich, Gauge noninvariance and parity violation of three-dimensional fermions, Phys. Rev. Lett.52 (1984) 18 [INSPIRE]. · doi:10.1103/PhysRevLett.52.18
[44] O. Bergman, N. Jokela, G. Lifschytz and M. Lippert, Quantum Hall effect in a holographic model, JHEP10 (2010) 063 [arXiv:1003.4965] [INSPIRE]. · Zbl 1291.81294 · doi:10.1007/JHEP10(2010)063
[45] N. Jokela, G. Lifschytz and M. Lippert, Magneto-roton excitation in a holographic quantum Hall fluid, JHEP02 (2011) 104 [arXiv:1012.1230] [INSPIRE]. · Zbl 1294.81208 · doi:10.1007/JHEP02(2011)104
[46] N. Jokela, M. Jarvinen and M. Lippert, A holographic quantum Hall model at integer filling, JHEP05 (2011) 101 [arXiv:1101.3329] [INSPIRE]. · Zbl 1296.81183 · doi:10.1007/JHEP05(2011)101
[47] O. Bergman, N. Jokela, G. Lifschytz and M. Lippert, Striped instability of a holographic Fermi-like liquid, JHEP10 (2011) 034 [arXiv:1106.3883] [INSPIRE]. · Zbl 1303.81145 · doi:10.1007/JHEP10(2011)034
[48] N. Jokela, M. Jarvinen and M. Lippert, Fluctuations of a holographic quantum Hall fluid, JHEP01 (2012) 072 [arXiv:1107.3836] [INSPIRE]. · Zbl 1306.81161 · doi:10.1007/JHEP01(2012)072
[49] N. Jokela, G. Lifschytz and M. Lippert, Magnetic effects in a holographic Fermi-like liquid, JHEP05 (2012) 105 [arXiv:1204.3914] [INSPIRE]. · doi:10.1007/JHEP05(2012)105
[50] J.L. Davis, P. Kraus and A. Shah, Gravity dual of a quantum Hall plateau transition, JHEP11 (2008) 020 [arXiv:0809.1876] [INSPIRE]. · doi:10.1088/1126-6708/2008/11/020
[51] S.-J. Rey, String theory on thin semiconductors: holographic realization of Fermi points and surfaces, Prog. Theor. Phys. Suppl.177 (2009) 128 [arXiv:0911.5295] [INSPIRE]. · Zbl 1173.81334 · doi:10.1143/PTPS.177.128
[52] D. Kutasov, J. Lin and A. Parnachev, Conformal phase transitions at weak and strong coupling, Nucl. Phys.B 858 (2012) 155 [arXiv:1107.2324] [INSPIRE]. · Zbl 1246.81276 · doi:10.1016/j.nuclphysb.2012.01.004
[53] J.L. Davis, H. Omid and G.W. Semenoff, Holographic fermionic fixed points in D = 3, JHEP09 (2011) 124 [arXiv:1107.4397] [INSPIRE]. · Zbl 1301.81200 · doi:10.1007/JHEP09(2011)124
[54] J.L. Davis and N. Kim, Flavor-symmetry breaking with charged probes, JHEP06 (2012) 064 [arXiv:1109.4952] [INSPIRE]. · doi:10.1007/JHEP06(2012)064
[55] H. Omid and G.W. Semenoff, D3-D7 holographic dual of a perturbed 3D CFT, arXiv:1208.5176 [INSPIRE].
[56] M. Goykhman, A. Parnachev and J. Zaanen, Fluctuations in finite density holographic quantum liquids, JHEP10 (2012) 045 [arXiv:1204.6232] [INSPIRE]. · doi:10.1007/JHEP10(2012)045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.