×

Non-geometric strings, symplectic gravity and differential geometry of Lie algebroids. (English) Zbl 1342.81402

Summary: Based on the structure of a Lie algebroid for non-geometric fluxes in string theory, a differential-geometry calculus is developed which combines usual diffeomorphisms with so-called \(\beta\)-diffeomorphisms emanating from gauge symmetries of the Kalb-Ramond field. This allows to construct a bi-invariant action of Einstein-Hilbert type comprising a metric, a (quasi-)symplectic structure {\(\beta\)} and a dilaton. As a salient feature, this symplectic gravity action and the resulting equations of motion take a form which is similar to the standard action and field equations. Furthermore, the two actions turn out to be related via a field redefinition reminiscent of the Seiberg-Witten limit. Remarkably, this redefinition admits a direct generalization to higher-order \(\alpha'\)-corrections and to the additional fields and couplings appearing in the effective action of the superstring. Simple solutions to the equations of motion of the symplectic gravity action, including Calabi-Yau geometries, are discussed.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
53Z05 Applications of differential geometry to physics

References:

[1] A. Dabholkar and C. Hull, Duality twists, orbifolds and fluxes, JHEP09 (2003) 054 [hep-th/0210209] [INSPIRE]. · doi:10.1088/1126-6708/2003/09/054
[2] S. Hellerman, J. McGreevy and B. Williams, Geometric constructions of nongeometric string theories, JHEP01 (2004) 024 [hep-th/0208174] [INSPIRE]. · Zbl 1243.81156 · doi:10.1088/1126-6708/2004/01/024
[3] C. Hull, A Geometry for non-geometric string backgrounds, JHEP10 (2005) 065 [hep-th/0406102] [INSPIRE]. · doi:10.1088/1126-6708/2005/10/065
[4] J. Shelton, W. Taylor and B. Wecht, Nongeometric flux compactifications, JHEP10 (2005) 085 [hep-th/0508133] [INSPIRE]. · doi:10.1088/1126-6708/2005/10/085
[5] P. Bouwknegt, K. Hannabuss and V. Mathai, Nonassociative tori and applications to T-duality, Commun. Math. Phys.264 (2006) 41 [hep-th/0412092] [INSPIRE]. · Zbl 1115.46063 · doi:10.1007/s00220-005-1501-8
[6] D. Mylonas, P. Schupp and R.J. Szabo, Membrane σ-models and quantization of non-geometric flux backgrounds, JHEP09 (2012) 012 [arXiv:1207.0926] [INSPIRE]. · Zbl 1397.81409 · doi:10.1007/JHEP09(2012)012
[7] A. Chatzistavrakidis and L. Jonke, Matrix theory origins of non-geometric fluxes, JHEP02 (2013) 040 [arXiv:1207.6412] [INSPIRE]. · Zbl 1342.81410 · doi:10.1007/JHEP02(2013)040
[8] R. Blumenhagen and E. Plauschinn, Nonassociative gravity in string theory?, J. Phys.A 44 (2011) 015401 [arXiv:1010.1263] [INSPIRE]. · Zbl 1208.83101
[9] D. Lüst, T-duality and closed string non-commutative (doubled) geometry, JHEP12 (2010) 084 [arXiv:1010.1361] [INSPIRE]. · Zbl 1294.81255 · doi:10.1007/JHEP12(2010)084
[10] R. Blumenhagen, A. Deser, D. Lüst, E. Plauschinn and F. Rennecke, Non-geometric fluxes, asymmetric strings and nonassociative geometry, J. Phys.A 44 (2011) 385401 [arXiv:1106.0316] [INSPIRE]. · Zbl 1229.81220
[11] C. Condeescu, I. Florakis and D. Lüst, Asymmetric orbifolds, non-geometric fluxes and non-commutativity in closed string theory, JHEP04 (2012) 121 [arXiv:1202.6366] [INSPIRE]. · Zbl 1348.81362 · doi:10.1007/JHEP04(2012)121
[12] N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP09 (1999) 032 [hep-th/9908142] [INSPIRE]. · Zbl 0957.81085 · doi:10.1088/1126-6708/1999/09/032
[13] M. Graña, R. Minasian, M. Petrini and D. Waldram, T-duality, generalized geometry and non-geometric backgrounds, JHEP04 (2009) 075 [arXiv:0807.4527] [INSPIRE]. · doi:10.1088/1126-6708/2009/04/075
[14] A. Coimbra, C. Strickland-Constable and D. Waldram, Supergravity as generalised geometry I: type II theories, JHEP11 (2011) 091 [arXiv:1107.1733] [INSPIRE]. · Zbl 1306.81205 · doi:10.1007/JHEP11(2011)091
[15] D.S. Berman, M. Cederwall, A. Kleinschmidt and D.C. Thompson, The gauge structure of generalised diffeomorphisms, JHEP01 (2013) 064 [arXiv:1208.5884] [INSPIRE]. · doi:10.1007/JHEP01(2013)064
[16] W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev.D 48 (1993) 2826 [hep-th/9305073] [INSPIRE].
[17] C. Hull and B. Zwiebach, Double field theory, JHEP09 (2009) 099 [arXiv:0904.4664] [INSPIRE]. · doi:10.1088/1126-6708/2009/09/099
[18] O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP07 (2010) 016 [arXiv:1003.5027] [INSPIRE]. · Zbl 1290.81069 · doi:10.1007/JHEP07(2010)016
[19] G. Aldazabal, W. Baron, D. Marques and C. Núñez, The effective action of double field theory, JHEP11 (2011) 052 [Erratum ibid.1111 (2011) 109] [arXiv:1109.0290] [INSPIRE]. · Zbl 1306.81178
[20] D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, A geometric action for non-geometric fluxes, Phys. Rev. Lett.108 (2012) 261602 [arXiv:1202.3060] [INSPIRE]. · doi:10.1103/PhysRevLett.108.261602
[21] D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, Non-geometric fluxes in supergravity and double field theory, Fortsch. Phys.60 (2012) 1150 [arXiv:1204.1979] [INSPIRE]. · Zbl 1255.83123 · doi:10.1002/prop.201200085
[22] D. Andriot, M. Larfors, D. Lüst and P. Patalong, A ten-dimensional action for non-geometric fluxes, JHEP09 (2011) 134 [arXiv:1106.4015] [INSPIRE]. · Zbl 1301.81178 · doi:10.1007/JHEP09(2011)134
[23] R. Blumenhagen, A. Deser, E. Plauschinn and F. Rennecke, A bi-invariant Einstein-Hilbert action for the non-geometric string, arXiv:1210.1591 [INSPIRE]. · Zbl 1372.83056
[24] N. Halmagyi, Non-geometric string backgrounds and worldsheet algebras, JHEP07 (2008) 137 [arXiv:0805.4571] [INSPIRE]. · doi:10.1088/1126-6708/2008/07/137
[25] R. Blumenhagen, A. Deser, E. Plauschinn and F. Rennecke, Bianchi identities for non-geometric fluxes — From quasi-Poisson structures to Courant algebroids, arXiv:1205.1522 [INSPIRE]. · Zbl 1259.83021
[26] N. Halmagyi, Non-geometric backgrounds and the first order string σ-model, arXiv:0906.2891 [INSPIRE].
[27] D.S. Berman and M.J. Perry, Generalized geometry and M-theory, JHEP06 (2011) 074 [arXiv:1008.1763] [INSPIRE]. · Zbl 1298.81244 · doi:10.1007/JHEP06(2011)074
[28] M. Boucetta, Riemannian geometry of Lie algebroids, arXiv:0806.3522. · Zbl 1267.53085
[29] R. Loja Fernandes, Connections in Poisson geometry I: holonomy and invariants, math/0001129. · Zbl 1036.53060
[30] M. Gualtieri, Branes on Poisson varieties, arXiv:0710.2719 [INSPIRE]. · Zbl 1239.53104
[31] R. Blumenhagen, A. Deser, E. Plauschinn and F. Rennecke, Palatini-Lovelock-Cartan gravity—- Bianchi identities for stringy fluxes, Class. Quant. Grav.29 (2012) 135004 [arXiv:1202.4934] [INSPIRE]. · Zbl 1248.83104 · doi:10.1088/0264-9381/29/13/135004
[32] D. Roytenberg, Courant algebroids, derived brackets and even symplectic supermanifolds, math/9910078. · Zbl 1036.53057
[33] I. Vaisman, Transitive Courant algebroids, math/0407399. · Zbl 1159.53348
[34] I.T. Ellwood, NS-NS fluxes in Hitchin’s generalized geometry, JHEP12 (2007) 084 [hep-th/0612100] [INSPIRE]. · Zbl 1246.81236 · doi:10.1088/1126-6708/2007/12/084
[35] C. Hull and B. Zwiebach, The gauge algebra of double field theory and Courant brackets, JHEP09 (2009) 090 [arXiv:0908.1792] [INSPIRE]. · doi:10.1088/1126-6708/2009/09/090
[36] R. Metsaev and A.A. Tseytlin, Two loop β-function for the generalized bosonic σ-model, Phys. Lett.B 191 (1987) 354 [INSPIRE].
[37] R. Metsaev and A.A. Tseytlin, Order α′ (two loop) equivalence of the string equations of motion and the σ-model Weyl invariance conditions: dependence on the dilaton and the antisymmetric tensor, Nucl. Phys.B 293 (1987) 385 [INSPIRE]. · doi:10.1016/0550-3213(87)90077-0
[38] C. Hull and P. Townsend, String effective actions from σ-model conformal anomalies, Nucl. Phys.B 301 (1988) 197 [INSPIRE]. · doi:10.1016/0550-3213(88)90342-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.