×

All exact solutions of non-abelian vortices from Yang-Mills instantons. (English) Zbl 1342.81279

Summary: We successfully exhaust the complete set of exact solutions of non-Abelian vortices in a quiver gauge theory, that is, the \(S[\mathrm{U}(N) \times \mathrm{U}(N)]\) gauge theory with a fundamental scalar field on a hyperbolic plane with a certain curvature, from SO(3)-invariant \(\mathrm{SU}(2N)\) Yang-Mills instanton solutions. This work provides, for the first time, exact non-Abelian vortex solutions. We establish the ADHM construction for non-Abelian vortices and identify all the moduli parameters and the complete moduli space.

MSC:

81T13 Yang-Mills and other gauge theories in quantum field theory
81R12 Groups and algebras in quantum theory and relations with integrable systems

References:

[1] A. Hanany and D. Tong, Vortices, instantons and branes, JHEP07 (2003) 037 [hep-th/0306150] [INSPIRE]. · doi:10.1088/1126-6708/2003/07/037
[2] R. Auzzi, S. Bolognesi, J. Evslin, K. Konishi and A. Yung, Non-Abelian superconductors: vortices and confinement in N = 2 SQCD, Nucl. Phys.B 673 (2003) 187 [hep-th/0307287] [INSPIRE]. · Zbl 1058.81580 · doi:10.1016/j.nuclphysb.2003.09.029
[3] M. Eto, Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, Moduli space of non-Abelian vortices, Phys. Rev. Lett.96 (2006) 161601 [hep-th/0511088] [INSPIRE]. · Zbl 1228.58006 · doi:10.1103/PhysRevLett.96.161601
[4] M. Eto et al., Non-Abelian vortices of higher winding numbers, Phys. Rev.D 74 (2006) 065021 [hep-th/0607070] [INSPIRE].
[5] D. Tong, TASI lectures on solitons: instantons, monopoles, vortices and kinks, hep-th/0509216 [INSPIRE].
[6] D. Tong, Quantum vortex strings: a review, Annals Phys.324 (2009) 30 [arXiv:0809.5060] [INSPIRE]. · Zbl 1159.81400 · doi:10.1016/j.aop.2008.10.005
[7] M. Eto, Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, Solitons in the Higgs phase: the moduli matrix approach, J. Phys.A 39 (2006) R315 [hep-th/0602170] [INSPIRE]. · Zbl 1099.35110
[8] M. Shifman and A. Yung, Supersymmetric solitons and how they help us understand non-Abelian gauge theories, Rev. Mod. Phys.79 (2007) 1139 [hep-th/0703267] [INSPIRE]. · Zbl 1205.81014 · doi:10.1103/RevModPhys.79.1139
[9] M. Shifman and A. Yung, Supersymmetric solitons, Cambridge Univ. Pr., Cambridge U.K. (2009). · Zbl 1205.81014
[10] A. Abrikosov, On the magnetic properties of superconductors of the second group, Sov. Phys. JETP5 (1957) 1174 [Zh. Eksp. Teor. Fiz.32 (1957) 1442] [INSPIRE].
[11] H.B. Nielsen and P. Olesen, Vortex line models for dual strings, Nucl. Phys.B 61 (1973) 45 [INSPIRE]. · doi:10.1016/0550-3213(73)90350-7
[12] A. Balachandran, S. Digal and T. Matsuura, Semi-superfluid strings in high density QCD, Phys. Rev.D 73 (2006) 074009 [hep-ph/0509276] [INSPIRE].
[13] E. Nakano, M. Nitta and T. Matsuura, Non-Abelian strings in high density QCD: zero modes and interactions, Phys. Rev.D 78 (2008) 045002 [arXiv:0708.4096] [INSPIRE].
[14] M. Eto and M. Nitta, Color magnetic flux tubes in dense QCD, Phys. Rev.D 80 (2009) 125007 [arXiv:0907.1278] [INSPIRE].
[15] M. Eto, E. Nakano and M. Nitta, Effective world-sheet theory of color magnetic flux tubes in dense QCD, Phys. Rev.D 80 (2009) 125011 [arXiv:0908.4470] [INSPIRE].
[16] E. Bogomolny, Stability of classical solutions, Sov. J. Nucl. Phys.24 (1976) 449 [Yad. Fiz.24 (1976) 861] [INSPIRE].
[17] M. Prasad and C.M. Sommerfield, An exact classical solution for the ’t Hooft monopole and the Julia-Zee dyon, Phys. Rev. Lett.35 (1975) 760 [INSPIRE]. · doi:10.1103/PhysRevLett.35.760
[18] M. Shifman and A. Yung, Non-Abelian string junctions as confined monopoles, Phys. Rev.D 70 (2004) 045004 [hep-th/0403149] [INSPIRE].
[19] A. Hanany and D. Tong, Vortex strings and four-dimensional gauge dynamics, JHEP04 (2004) 066 [hep-th/0403158] [INSPIRE]. · doi:10.1088/1126-6708/2004/04/066
[20] N. Dorey, The BPS spectra of two-dimensional supersymmetric gauge theories with twisted mass terms, JHEP11 (1998) 005 [hep-th/9806056] [INSPIRE]. · Zbl 0949.81060
[21] N. Dorey, T.J. Hollowood and D. Tong, The BPS spectra of gauge theories in two-dimensions and four-dimensions, JHEP05 (1999) 006 [hep-th/9902134] [INSPIRE]. · doi:10.1088/1126-6708/1999/05/006
[22] A. Belavin, A.M. Polyakov, A. Schwartz and Y. Tyupkin, Pseudoparticle solutions of the Yang-Mills equations, Phys. Lett.B 59 (1975) 85 [INSPIRE].
[23] S. Shadchin, On F-term contribution to effective action, JHEP08 (2007) 052 [hep-th/0611278] [INSPIRE]. · Zbl 1326.81212 · doi:10.1088/1126-6708/2007/08/052
[24] T. Dimofte, S. Gukov and L. Hollands, Vortex counting and Lagrangian 3-manifolds, Lett. Math. Phys.98 (2011) 225 [arXiv:1006.0977] [INSPIRE]. · Zbl 1239.81057 · doi:10.1007/s11005-011-0531-8
[25] Y. Yoshida, Localization of vortex partition functions in \(\mathcal{N} \) = (2, 2) super Yang-Mills theory, arXiv:1101.0872 [INSPIRE].
[26] G. Bonelli, A. Tanzini and J. Zhao, Vertices, vortices and interacting surface operators, JHEP06 (2012) 178 [arXiv:1102.0184] [INSPIRE]. · Zbl 1397.81136 · doi:10.1007/JHEP06(2012)178
[27] G. Bonelli, A. Tanzini and J. Zhao, The Liouville side of the vortex, JHEP09 (2011) 096 [arXiv:1107.2787] [INSPIRE]. · Zbl 1301.81189 · doi:10.1007/JHEP09(2011)096
[28] A. Miyake, K. Ohta and N. Sakai, Volume of moduli space of vortex equations and localization, Prog. Theor. Phys.126 (2011) 637 [arXiv:1105.2087] [INSPIRE]. · Zbl 1247.81439 · doi:10.1143/PTP.126.637
[29] T. Fujimori, T. Kimura, M. Nitta and K. Ohashi, Vortex counting from field theory, JHEP06 (2012) 028 [arXiv:1204.1968] [INSPIRE]. · Zbl 1397.81360 · doi:10.1007/JHEP06(2012)028
[30] N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys.7 (2004) 831 [hep-th/0206161] [INSPIRE]. · Zbl 1056.81068
[31] T. Inami, S. Minakami and M. Nitta, Non-integrability of self-dual Yang-Mills-Higgs system, Nucl. Phys.B 752 (2006) 391 [hep-th/0605064] [INSPIRE]. · Zbl 1215.81064 · doi:10.1016/j.nuclphysb.2006.06.015
[32] M. Atiyah, N.J. Hitchin, V. Drinfeld and Y. Manin, Construction of instantons, Phys. Lett.A 65 (1978) 185 [INSPIRE]. · Zbl 0424.14004
[33] M. Eto, Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, Manifestly supersymmetric effective Lagrangians on BPS solitons, Phys. Rev.D 73 (2006) 125008 [hep-th/0602289] [INSPIRE].
[34] T. Fujimori, G. Marmorini, M. Nitta, K. Ohashi and N. Sakai, The moduli space metric for well-separated non-Abelian vortices, Phys. Rev.D 82 (2010) 065005 [arXiv:1002.4580] [INSPIRE].
[35] M. Eto, T. Fujimori, M. Nitta, K. Ohashi and N. Sakai, Dynamics of non-Abelian vortices, Phys. Rev.D 84 (2011) 125030 [arXiv:1105.1547] [INSPIRE].
[36] M. Eto et al., Universal reconnection of non-Abelian cosmic strings, Phys. Rev. Lett.98 (2007) 091602 [hep-th/0609214] [INSPIRE]. · doi:10.1103/PhysRevLett.98.091602
[37] M. Eto et al., Non-Abelian duality from vortex moduli: a dual model of color-confinement, Nucl. Phys.B 780 (2007) 161 [hep-th/0611313] [INSPIRE]. · Zbl 1188.81132 · doi:10.1016/j.nuclphysb.2007.03.040
[38] M. Eto et al., Group theory of non-Abelian vortices, JHEP11 (2010) 042 [arXiv:1009.4794] [INSPIRE]. · Zbl 1294.81102 · doi:10.1007/JHEP11(2010)042
[39] E. Witten, Some exact multi-instanton solutions of classical Yang-Mills theory, Phys. Rev. Lett.38 (1977) 121 [INSPIRE]. · doi:10.1103/PhysRevLett.38.121
[40] I. Strachan, Low velocity scattering of vortices in a modified Abelian Higgs model, J. Math. Phys.33 (1992) 102 [INSPIRE]. · Zbl 0825.58053 · doi:10.1063/1.529949
[41] A.D. Popov, Integrability of vortex equations on Riemann surfaces, Nucl. Phys.B 821 (2009) 452 [arXiv:0712.1756] [INSPIRE]. · Zbl 1203.53075 · doi:10.1016/j.nuclphysb.2009.05.003
[42] A.D. Popov, Non-Abelian vortices on Riemann surfaces: an integrable case, Lett. Math. Phys.84 (2008) 139 [arXiv:0801.0808] [INSPIRE]. · Zbl 1169.53020 · doi:10.1007/s11005-008-0243-x
[43] S. Krusch and J.M. Speight, Exact moduli space metrics for hyperbolic vortices, J. Math. Phys.51 (2010) 022304 [arXiv:0906.2007] [INSPIRE]. · Zbl 1309.35152 · doi:10.1063/1.3277189
[44] N.S. Manton and N.A. Rink, Vortices on hyperbolic surfaces, J. Phys.A 43 (2010) 434024 [arXiv:0912.2058] [INSPIRE]. · Zbl 1202.81153
[45] P. Sutcliffe, Hyperbolic vortices with large magnetic flux, Phys. Rev.D 85 (2012) 125015 [arXiv:1204.0400] [INSPIRE].
[46] N.S. Manton and N. Sakai, Maximally non-Abelian vortices from self-dual Yang-Mills fields, Phys. Lett.B 687 (2010) 395 [arXiv:1001.5236] [INSPIRE].
[47] A.D. Popov and R.J. Szabo, Quiver gauge theory of non-Abelian vortices and noncommutative instantons in higher dimensions, J. Math. Phys.47 (2006) 012306 [hep-th/0504025] [INSPIRE]. · Zbl 1111.81143 · doi:10.1063/1.2157005
[48] O. Lechtenfeld, A.D. Popov and R.J. Szabo, Quiver gauge theory and noncommutative vortices, Prog. Theor. Phys. Suppl.171 (2007) 258 [arXiv:0706.0979] [INSPIRE]. · Zbl 1142.81366 · doi:10.1143/PTPS.171.258
[49] M. Eto et al., Constructing non-Abelian vortices with arbitrary gauge groups, Phys. Lett.B 669 (2008) 98 [arXiv:0802.1020] [INSPIRE].
[50] M. Eto et al., Non-Abelian vortices in SO(N) and USp(N) gauge theories, JHEP06 (2009) 004 [arXiv:0903.4471] [INSPIRE]. · doi:10.1088/1126-6708/2009/06/004
[51] M. Eto, T. Fujimori, S.B. Gudnason, M. Nitta and K. Ohashi, SO and USp Kähler and hyper-Kähler quotients and lumps, Nucl. Phys.B 815 (2009) 495 [arXiv:0809.2014] [INSPIRE]. · Zbl 1194.81232 · doi:10.1016/j.nuclphysb.2009.01.019
[52] M. Eto et al., Vortices and monopoles in mass-deformed SO and USp gauge theories, JHEP12 (2011) 017 [arXiv:1108.6124] [INSPIRE]. · Zbl 1306.81098 · doi:10.1007/JHEP12(2011)017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.