×

The impact of hierarchically constrained dynamics with a finite mean of cluster sizes on relaxation properties. (English) Zbl 1342.70054

Summary: In this paper, a stochastic scenario of relaxation underlying the generalization [R. Kahlau et al., “Generalization of the Cole-Davidson and Kohlrausch functions to describe the primary response of glass-forming systems”, J. Phys. Cond. Matters 22, No. 36, Article ID 365101 (2010; doi:10.1088/0953-8984/22/36/365101)] of the Cole-Davidson (CD) and Kohlrausch-Williams-Watts (KWW) functions is proposed. As it has been shown [loc. cit.], the new three-parameter time-domain fitting function provides a very flexible description of the dielectric spectroscopy data for viscous glass-forming liquids. In relation to that result we discuss a hierarchically-constrained model yielding the proposed relaxation fitting function. Within the “exponentially decaying relaxation contributions” framework we show origins of the high-frequency (short-time, respectively) fractional power law, i.e., the characteristic feature of the new, as well as, of both CD and KWW response functions. We also bring into light a reason for which their common behavior in the opposite frequency limit is linear on external field frequency. Finally, we relate the new relaxation pattern [loc. cit.] with the Generalized Gamma (GG) survival probability of an imposed, non-equilibrium initial state in a relaxing system.

MSC:

70H45 Constrained dynamics, Dirac’s theory of constraints
82C05 Classical dynamic and nonequilibrium statistical mechanics (general)
Full Text: DOI

References:

[1] Jonscher, A. K., Dielectric Relaxation in Solids (1983), Chelsea Dielectrics Press: Chelsea Dielectrics Press London
[2] Havriliak, S.; Havriliak, S. J., J. Non-Cryst. Solids, 172-174, 297 (1994)
[3] Jonscher, A. K., Universal Relaxation Law (1996), Chelsea Dielectrics Press: Chelsea Dielectrics Press London
[4] Weron, K.; Jurlewicz, A.; Jonscher, A. K., IEEE Trans. Dielectr. Electr. Insul., 8, 352 (2001)
[5] Jurlewicz, A.; Weron, K., J. Non-Cryst. Solids, 305, 112 (2002)
[6] Jonscher, A. K.; Jurlewicz, A.; Weron, K., Contemp. Phys., 44, 329 (2003)
[7] Feller, W., An Introduction to Probability and its Applications, Vols. 1 and 2 (1966), Wiley: Wiley New York · Zbl 0138.10207
[8] Jurlewicz, A.; Weron, K.; Teuerle, M., Phys. Rev. E, 78, 011103 (2008)
[9] Shirkov, D. V., Internat. J. Modern Phys. A, 3, 1321 (1988)
[10] Nayak, C.; Wilczek, F., Nuclear Phys. B, 430, 534 (1994)
[11] Zaslavsky, G. M., Phys. Rep., 371, 461 (2002) · Zbl 0999.82053
[12] de la Fuente, M. R.; Perez Jubindo, M. A.; Solier, J. D.; Tello, M. J., J. Phys. C: Solid State Phys., 18, 6547 (1985)
[13] Klafter, J.; Shlesinger, M. F., Proc. Natl. Acad. Sci. USA, 83, 848 (1986)
[14] Jurlewicz, A.; Weron, K., Cell. Mol. Biol. Lett., 4, 55 (1999)
[15] Kahlau, R.; Kruk, D.; Blochovicz, Th.; Novikov, V. N.; Rossler, E. A., J. Phys.: Condens. Matter, 22, 365101 (2010)
[16] Medina, J. S.; Prosmiti, R.; Villarreal, P.; Delgado-Barrio, G.; Alemán, J. V., Phys. Rev. E, 84, 066703 (2011)
[17] Johnson, N. L.; Kotz, S., Distributions in Statistics: Continuous Univariate Distributions (1970), Wiley: Wiley New York · Zbl 0213.21101
[18] Ogielski, T. A., Phys. Rev. B, 32, 7384 (1985)
[19] Jurlewicz, A.; Weron, K., Acta Phys. Polon. B, 31, 1077 (2000)
[20] Pickup, R. M.; Cywinski, R.; Pappas, C.; Farago, B.; Fouquet, P., Phys. Rev. Lett., 102, 097202 (2009)
[21] Miller, A. R.; Moskowitz, I. S., Comput. Math. Appl., 30, 73 (1995) · Zbl 0839.33003
[22] Zolotarev, V. M., One-Dimensional Stable Distributions (1986), American Mathematical Society: American Mathematical Society RI, Providence · Zbl 0589.60015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.