×

Substructuring preconditioners for the systems arising from plane wave discretization of Helmholtz equations. (English) Zbl 1342.65219

Summary: In this paper we are concerned with the plane wave methods for Helmholtz equations with large wave numbers. We extend the plane wave weighted least-squares (PWLS) method and the plane wave discontinuous Galerkin (PWDG) method to Helmholtz equations in inhomogeneous mediums and with mixed boundary conditions. The main goal of this paper is to construct parallel preconditioners for solving the resulting discrete systems. To this end, we design a kind of substructuring domain decomposition preconditioner for both the two-dimensional case and the three-dimensional case, which is different from the existing substructuring preconditioners. We apply the proposed preconditioner to solve the Helmholtz systems generated by the PWLS method or the PWDG method, and we find that the new preconditioners with practical coarse mesh sizes possess relatively stable convergence, i.e., the iteration counts of the corresponding iterative methods (PCG or preconditioned GMRES) increase slowly when the wave number increases (and the mesh size decreases).

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
Full Text: DOI

References:

[1] L. Beirao da Veiga, D. Cho, L. F. Pavarino, and S. Scacchi, {\it Overlapping Schwarz methods for isogeometric analysis}, SIAM J. Numer. Anal., 50 (2012), pp. 1394-1416. · Zbl 1250.65149
[2] S. Brenner and L. Sung, {\it BDDC and FETI-DP without matrices or vectors}, Comput. Methods Appl. Mech. Engrg., 196 (2007), pp. 1429-1435. · Zbl 1173.65363
[3] J. Bramble, J. Pasciak, and A. Schatz, {\it The construction of preconditioners for elliptic problems by substructuring}, IV. Math. Comp., 53 (1989), pp. 1-24. · Zbl 0668.65082
[4] X. Cai, {\it An additive Schwarz algorithm for parabolic convection-diffusion equations}, Numer. Math., 60 (1991), pp. 41-61. · Zbl 0737.65078
[5] X. Cai and O. Widlund, {\it Domain decomposition algorithms for indefinite elliptic problems}, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 243-258. · Zbl 0746.65085
[6] O. Cessenat and B. Despres, {\it Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz problem}, SIAM J. Numer. Anal., 35 (1998), pp. 255-299. · Zbl 0955.65081
[7] Z. Chen and X. Xiang, {\it A source transfer domain decomposition method for Helmholtz equations in unbounded domain}, SIAM J. Numer. Anal., 51 (2013), pp. 2331-2356. · Zbl 1285.65082
[8] E. T. Chung, H. H. Kim, and O. B. Widlund, {\it Two-level overlapping Schwarz algorithms for a staggered discontinuous Galerkin method}, SIAM J. Numer. Anal., 51 (2013), pp. 47-67. · Zbl 1267.65193
[9] C. Dohrmann and O. Widlund, {\it An iterative substructuring algorithm for two-dimensional problems in H(curl)}, SIAM J. Numer. Anal., 50 (2012), pp. 1004-1028. · Zbl 1260.78014
[10] M. Dryja, J. Galvis, and M. Sarkis, {\it BDDC methods for discontinuous Galerkin discretization of elliptic problems}, J. Complexity, 23 (2007), pp. 715-739. · Zbl 1133.65097
[11] M. Dryja, F. Smith, and O. Widlund, {\it Schwarz analysis of iterative substructuring algorithms for elliptic problems in three dimensions}, SIAM J. Numer. Anal., 31 (1994), pp. 1662-1694. · Zbl 0818.65114
[12] B. Engquist and L. Ying, {\it Sweeping preconditioner for the Helmholtz equation: Moving perfectly matched layers}, Multiscale Model. Simul., 9 (2011), pp. 686-710. · Zbl 1228.65234
[13] C. Farhat, A. Macedo, and M. Lesoinne, {\it A two-level domain decomposition method for the iterative solution of high frequency exterior Helmholtz problems}, Numer. Math., 85 (2000), pp. 283-308. · Zbl 0965.65133
[14] C. Farhat, R. Tezaur, and J. Toivanen, {\it A domain decomposition method for discontinuous Galerkin discretizations of Helmholtz problems with plane waves and Lagrange multipliers}, Internat. J. Numer. Methods Engrg., 78 (2009), pp. 1513-1531. · Zbl 1171.76417
[15] P. Gamallo and R. Astley, {\it A comparison of two Trefftz-type methods: The ultra weak variational formulation and the least-squares method, for solving shortwave \(2\)-D Helmholtz problems}, Internat. J. Numer. Methods Engrg., 71 (2007), pp. 406-432. · Zbl 1194.76239
[16] M. Gander, F. Magoules, and F. Nataf, {\it Optimized Schwarz methods without overlap for the Helmholtz equation}, SIAM J. Sci. Comput., 24 (2002), pp. 38-60. · Zbl 1021.65061
[17] C. Gittelson, R. Hiptmair, and I. Perugia, {\it Plane wave discontinuous Galerkin methods: Analysis of the \(h\)-version}, ESAIM Math. Model. Numer. Anal., 43 (2009), pp. 297-331. · Zbl 1165.65076
[18] U. Hetmaniuk, {\it Stability estimates for a class of Helmholtz problems}, Commun. Math. Sci., 5 (2007), pp. 665-678. · Zbl 1135.35323
[19] R. Hiptmair, A. Moiola, and I. Perugia, {\it Plane wave discontinuous Galerkin methods for the \(2\) D Helmholtz equation: Analysis of the \(p\)-version}, SIAM J. Numer. Anal., 49 (2011), pp. 264-284. · Zbl 1229.65215
[20] R. Hiptmair, A. Moiola, and I. Perugia, {\it Error analysis of Trefftz-discontinuous Galerkin methods for the time-harmonic Maxwell equations}, Math. Comp., 82 (2013), pp. 247-268. · Zbl 1269.78013
[21] Q. Hu and G. Liang, {\it Acceleration of the non-symmetrized, two-level iteration}, Appl. Numer. Math., 41 (2002), pp. 305-323. · Zbl 1007.65023
[22] Q. Hu, Z. Shi, and D. Yu, {\it Efficient solvers for saddle-point problems arising from domain decompositions with Lagrange multipliers}, SIAM J. Numer. Anal., 42 (2004), pp. 905-933. · Zbl 1083.65112
[23] Q. Hu, S. Shu, and J. Wang, {\it Nonoverlapping domain decomposition methods with a simple coarse space for elliptic problems}, Math. Comp., 79 (2010), pp. 2059-2078. · Zbl 1204.65140
[24] Q. Hu and L. Yuan, {\it A weighted variational formulation based on plane wave basis for discretization of Helmholtz equations}, Int. J. Numer. Anal. Model., 11 (2014), pp. 587-607. · Zbl 1499.65666
[25] Q. Hu and L. Yuan, {\it A plane-wave least-squares method for time-harmonic Maxwell’s equations in absorbing media}, SIAM J. Sci. Comput., 36 (2014), pp. 1937-1959. · Zbl 1305.78018
[26] Q. Hu and J. Zou, {\it Substructuring preconditioners for saddle-point problems arising from Maxwell’s equations in three dimensions}, Math. Comp., 73 (2004), pp. 35-61. · Zbl 1048.65109
[27] T. Huttunen, M. Malinen, and P. Monk, {\it Solving Maxwell’s equations using the ultra weak variational formulation}, J. Comput. Phys., 223 (2007), pp. 731-758. · Zbl 1117.78011
[28] H. Kim and X. Tu, {\it A three-level BDDC algorithm for mortar discretizations}, SIAM J. Numer. Anal., 47 (2009), pp. 1576-1600. · Zbl 1194.65146
[29] J. Mandel, C. R. Dohrmann, and R. Tezaur, {\it An algebraic theory for primal and dual substructuring methods by constraints}, Appl. Numer. Math., 54 (2005), pp. 167-193. · Zbl 1076.65100
[30] T. Huttunen, P. Monk, and J. Kaipio, {\it Computational aspects of the ultra-weak variational formulation}, J. Comput. Phys., 182 (2002), pp. 27-46. · Zbl 1015.65064
[31] L. Kovalevsky, P. Ladevèze, and H. Riou, {\it The Fourier version of the variational theory of complex rays for medium-frequency acoustics}, Comput. Methods Appl. Mech. Engrg., 225-228 (2012), pp. 142-153. · Zbl 1253.76118
[32] P. Ladevèze, {\it A new computational approach for structure vibrations in the medium frequency range}, C. R. Acad. Sci. Paris, 322 (1996), pp. 849-856. · Zbl 0920.73113
[33] C. Lasser and A. Toselli, {\it An overlapping domain decomposition preconditioner for a class of discontinuous Galerkin approximations of advection-diffusion problems}, Math. Comput., 72 (2003), pp. 1215-1238. · Zbl 1038.65135
[34] J. Li and O.B. Widlund, {\it On the use of inexact subdomain solvers for BDDC algorithms}, Comput. Methods Appl. Mech. Engrg., 196 (2007), pp. 1415-1428. · Zbl 1173.65365
[35] F. Magouls, F. Roux, and S. Salmon, {\it Optimal discrete transmission conditions for a nonoverlapping domain decomposition method for the Helmholtz equation}, SIAM J. Sci. Comput., 25 (2004), pp. 1497-1515. · Zbl 1086.65118
[36] A. Moiola, R. Hiptmair, and I. Perugia, {\it Plane wave approximation of homogeneous Helmholtz solutions}, Z. Angew. Math. Phys., 62 (2011), pp. 809-837. · Zbl 1263.35070
[37] P. Monk and D. Wang, {\it A least-squares method for the Helmholtz equation}, Comput. Methods Appl. Mech. Engrg., 175 (1999), pp. 121-136. · Zbl 0943.65127
[38] H. Riou, P. Ladevèze, B. Sourcis, B. Faverjon, and L. Kovalevsky, {\it An adaptive numerical strategy for the medium-frequency analysis of Helmholtz’s problem}, J. Comput. Acoust., 20 (2012), doi: 10.1142/S0218396X11004481. · Zbl 1291.76263
[39] B. Smith, {\it An optimal domain decomposition preconditioner for the finite element solution of linear elasticity problems}, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 364-378. · Zbl 0751.73059
[40] C. C. Stolk, {\it A rapidly converging domain decomposition method for the Helmholtz equation}, J. Comput. Phys., 241 (2013), pp. 240-252. · Zbl 1349.65426
[41] R. Tezaur and C. Farhat, {\it Three-dimensional directional discontinuous Galerkin elements with plane waves and Lagrange multipliers for the solution of mid-frequency Helmholtz problems}, Internat. J. Numer. Methods Engrg., 66 (2006), pp. 796-815. · Zbl 1110.76319
[42] A. Toselli, {\it Overlapping Schwarz methods for Maxwell’s equations in three dimensions}, Numer. Math., 86 (2000), pp. 733-752. · Zbl 0980.78010
[43] A. Toselli and O. Widlund, {\it Domain Decomposition Methods: Algorithms and Theory}, Springer, Berlin, 2005. · Zbl 1069.65138
[44] E. Trefftz, {\it Ein gegenstuck zum ritzschen verfahren}, in Proceedings of the 2nd International Congress of Applied Mechanics, 1926, pp. 131-137. · JFM 52.0483.02
[45] L. Veiga, L. Pavarino, S. Scacchi, O. Widlund, and S. Zampini, {\it Isogeometric BDDC preconditioners with deluxe scaling}, SIAM J. Sci. Comput., 36 (2014), pp. 1118-1139. · Zbl 1320.65047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.