×

Reduced-order finite element method based on POD for fractional Tricomi-type equation. (English) Zbl 1342.65194

Summary: The reduced-order finite element method (FEM) based on a proper orthogonal decomposition (POD) theory is applied to the time fractional Tricomi-type equation. The present method is an improvement on the general FEM. It can significantly save memory space and effectively relieve the computing load due to its reconstruction of POD basis functions. Furthermore, the reduced-order finite element (FE) scheme is shown to be unconditionally stable, and error estimation is derived in detail. Two numerical examples are presented to show the feasibility and effectiveness of the method for time fractional differential equations (FDEs).

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35R11 Fractional partial differential equations
Full Text: DOI

References:

[1] Podlubny, I. Fractional Differential Equations, Academic Press, New York (1999) · Zbl 0924.34008
[2] Liu, F., Anh, V., Turner, I., and Zhang, P. Time fractional advection dispersion equation. Journal of Applied Mathematics and Computing,13(1), 233-245 (2003) · Zbl 1068.26006 · doi:10.1007/BF02936089
[3] Yuste, S. B. and Acedo, L. An explicit finite difference method and a new von Numann-type stability analysis for fractional diffusion equation. SIAM Journal on Numerical Analysis,42(5), 1862-1874 (2005) · Zbl 1119.65379 · doi:10.1137/030602666
[4] Lin, Y. M. and Xu, C. J. Finite difference/spectral approximations for the time-fractional diffusion equation. Journal of Computational Physics,225(2), 1533-1552 (2007) · Zbl 1126.65121 · doi:10.1016/j.jcp.2007.02.001
[5] Ervin, V. J. and Roop, J. P. Variational formulation for the stationary fractional advection dispersion equation. Numerical Methods for Partial Differential Equations,22(3), 558-576 (2006) · Zbl 1095.65118 · doi:10.1002/num.20112
[6] Zhang, H., Liu, F., and Anh, V. Galerkin finite element approximations of symmetric spacefractional partial differnetial equations. Applied Mathematics and Computation,217(6), 2534-2545 (2010) · Zbl 1206.65234 · doi:10.1016/j.amc.2010.07.066
[7] Li, C. P., Zhao, Z. G., and Chen, Y. Q. Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Computers and Mathematics with Applications,62(3), 855-875 (2011) · Zbl 1228.65190 · doi:10.1016/j.camwa.2011.02.045
[8] Ford, N. J., Xiao, J. Y., and Yan, Y. B. A finite element method for time fractional partial differential equations. Fractional Calculus and Applied Analysis, 14(3), 454-474 (2011) · Zbl 1273.65142 · doi:10.2478/s13540-011-0028-2
[9] Zhang, X. D., Huang, P. Z., Feng, X. L., and Wei, L. L. Finite element method for two-dimensional time-fractional Tricomi-type equations. Numerical Methods for Partial Differential Equations,29(4), 1081-1096 (2013) · Zbl 1276.65060 · doi:10.1002/num.21745
[10] Deng, W. H. Short memory principle and a predictor-corrector approach for fractional differential equations. Journal of Computational and Applied Mathematics,206(1), 174-188 (2007) · Zbl 1121.65128 · doi:10.1016/j.cam.2006.06.008
[11] Ford, N. J. and Simpson, A. C. The numerical solution of fractional differential equations: speed versus accuracy. Numerical Algorithms,26(4), 333-346 (2001) · Zbl 0976.65062 · doi:10.1023/A:1016601312158
[12] Holmes, P. J., Lumley, L., and Berkooz, G. Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge University Press, Cambridge (1996) · Zbl 0890.76001 · doi:10.1017/CBO9780511622700
[13] Jolliffe, I. T. Principal Component Analysis, Springer-Verlag, Berlin (2002) · Zbl 1011.62064
[14] Fukunaga, K. Introduction to Statistical Pattern Recognition, Academic Press, New York (1990) · Zbl 0711.62052
[15] Kunisch, K. and Volkwein, S. Galerkin proper orthogonal decomposition methods for parabolic problems. Numerische Mathematik,90(1), 117-148 (2001) · Zbl 1005.65112 · doi:10.1007/s002110100282
[16] Kunisch, K. and Volkwein, S. Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM Journal on Numerical Analysis,40(2), 492-515 (2002) · Zbl 1075.65118 · doi:10.1137/S0036142900382612
[17] Sun, P., Luo, Z. D., and Zhou, Y. J. Some reduced finite difference schemes based on a proper orthogonal decomposition technique for parabolic equations. Applied Numerical Mathematics,60, 154-164 (2010) · Zbl 1193.65159 · doi:10.1016/j.apnum.2009.10.008
[18] Luo, Z. D., Chen, J., Sun, P., and Yang, X. Z. Finite element formulation based on proper orthogonal decomposition for parabolic equations. Science in China Series A: Mathematics,52(3), 585-596 (2009) · Zbl 1183.65122 · doi:10.1007/s11425-008-0125-9
[19] Luo, Z. D., Li, H., Zhou, Y. J., and Huang, X. M. A reduced-order FVE formulation based on POD method and error analysis for two-dimensional viscoelastic problem. Journal of Mathematical Analysis and Applications, 385(1), 310-321 (2012) · Zbl 1368.74071 · doi:10.1016/j.jmaa.2011.06.057
[20] Luo, Z. D. A reduced-order SMFVE extrapolation algorithm based on POD technique and CN method for the non-stationary Navier-Stokes equations. Discrete and Continuous Dynamical Systems Series B, 20(4), 1189-1212 (2015) · Zbl 1307.65115 · doi:10.3934/dcdsb.2015.20.1189
[21] Liu, J. C., Li, H., Fang, Z. C., and Liu, Y. Application of low-dimensional finite element method to fractional diffusion equation. International Journal of Modeling, Simulation, and Scientific Computing,5(4), 1450022 (2014) · doi:10.1142/S1793962314500226
[22] Adams, R. A. Sobolev Spaces, Academic Press, New York (1975) · Zbl 0314.46030
[23] Thomée, V. Galerkin Finite Element Methods for Parabolic Problems, Springer-Verlag, Berlin (1997) · Zbl 0884.65097 · doi:10.1007/978-3-662-03359-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.