×

On the convergence rate of finite difference methods for degenerate convection-diffusion equations in several space dimensions. (English) Zbl 1342.65182

This work aims to derive the error estimates for a class of finite difference methods of nonlinear, possibly strongly degenerate, convection-diffusion problems; particularly this is aimed at entropy solutions to convection-diffusion equations. The monotone methods make use of an upwind discretisation of the convection term and a centred discretisation for the parabolic term. It is shown that the local \(L^1\)-error is \(O(\Delta x ^{2/(19+d)})\), where \(d\) is the spatial dimension. The proof provided makes use of specific kinetic formulations of the difference method and the convection-diffusion equation.

MSC:

65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
35K65 Degenerate parabolic equations

References:

[1] B. Andreianov, M. Bendahmane and K.H. Karlsen, Discrete duality finite volume schemes for doubly nonlinear degenerate hyperbolic-parabolic equations. J. Hyperbolic Differ. Equ.7 (2010) 1-67. · Zbl 1207.35020 · doi:10.1142/S0219891610002062
[2] B. Andreianov and N. Igbida, On uniqueness techniques for degenerate convection-diffusion problems. Int. J. Dyn. Syst. Differ. Eq.4 (2012) 3-34. · Zbl 1263.35007
[3] D. Aregba-Driollet, R. Natalini and S. Tang, Explicit diffusive kinetic schemes for nonlinear degenerate parabolic systems. Math. Comput.73 (2004) 63-94. · Zbl 1031.65093 · doi:10.1090/S0025-5718-03-01549-7
[4] G. Barles and E.R. Jakobsen, Error bounds for monotone approximation schemes for Hamiltonacobiellman equations. SIAM J. Numer. Anal.43 (2005) 540-558. · Zbl 1092.65077 · doi:10.1137/S003614290343815X
[5] F. Bouchut and B. Perthame, Kružkov’s estimates for scalar conservation laws revisited. Trans. Amer. Math. Soc.350 (1998) 2847-2870. · Zbl 0955.65069 · doi:10.1090/S0002-9947-98-02204-1
[6] F. Bouchut, F. R. Guarguaglini and R. Natalini, Diffusive BGK approximations for nonlinear multidimensional parabolic equations. Indiana Univ. Math. J.49 (2000) 723-749. · Zbl 0964.35011 · doi:10.1512/iumj.2000.49.1811
[7] L.A. Caffarelli and P. E. Souganidis. A rate of convergence for monotone finite difference approximations to fully nonlinear, uniformly elliptic PDEs. Commun. Pure Appl. Math.61 (2008) 1-17. · Zbl 1140.65075 · doi:10.1002/cpa.20208
[8] J. Carrillo, Entropy solutions for nonlinear degenerate problems. Arch. Ration. Mech. Anal.147 (1999) 269-361. · Zbl 0935.35056 · doi:10.1007/s002050050152
[9] A. Chambolle and B.J. Lucier, Un principe du maximum pour des opérateurs monotones. C. R. Acad. Sci. Paris Sér. I Math.326 (1998) 823-827. · Zbl 0935.47034 · doi:10.1016/S0764-4442(98)80020-7
[10] G.-Q. Chen and B. Perthame, Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations. Ann. Inst. Henri Poincaré, Anal. Non Linéaire20 (2003) 645-668. · Zbl 1031.35077 · doi:10.1016/S0294-1449(02)00014-8
[11] G.-Q. Chen and K.H. Karlsen, Quasilinear anisotropic degenerate parabolic equations with time-space dependent diffusion coefficients. Commun. Pure Appl. Anal.4 (2005) 241-266. · Zbl 1084.35034 · doi:10.3934/cpaa.2005.4.241
[12] G.-Q. Chen and K.H. Karlsen, L^{1}-framework for continuous dependence and error estimates for quasilinear anisotropic degenerate parabolic equations. Trans. Amer. Math. Soc.358 (2006) 937-963. · Zbl 1096.35072 · doi:10.1090/S0002-9947-04-03689-X
[13] B. Cockburn, Continuous dependence and error estimation for viscosity methods. Acta Numer.12 (2003) 127-180. · Zbl 1048.65090 · doi:10.1017/S0962492902000107
[14] M.G. Crandall and T.M. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces. Amer. J. Math.93 (1971) 265-298. · Zbl 0226.47038 · doi:10.2307/2373376
[15] M.G. Crandall and P.-L. Lions, Two approximations of solutions of Hamilton-Jacobi equations. Math. Comput.43 (1984) 1-19. · Zbl 0557.65066 · doi:10.1090/S0025-5718-1984-0744921-8
[16] C.M. Dafermos, Hyperbolic conservation laws in continuum physics. Vol. 325 of Grundl. Math. Wiss. [Fundamental Principles of Mathematical Sciences]. 3rd edition Springer-Verlag, Berlin (2010). · Zbl 1196.35001
[17] S. Evje and K.H. Karlsen, Discrete approximations of BV solutions to doubly nonlinear degenerate parabolic equations. Numer. Math.86 (2000) 377-417. · Zbl 0963.65094 · doi:10.1007/s002110000156
[18] S. Evje and K.H. Karlsen, Monotone difference approximations of BV solutions to degenerate convection-diffusion equations. SIAM J. Numer. Anal.37 (2000) 1838-1860. · Zbl 0985.65100 · doi:10.1137/S0036142998336138
[19] S. Evje and K.H. Karlsen, An error estimate for viscous approximate solutions of degenerate parabolic equations. J. Nonlin. Math. Phys.9 (2002) 262-281. · Zbl 1183.35180 · doi:10.2991/jnmp.2002.9.3.3
[20] R. Eymard, T. Gallouët and R. Herbin, Error estimate for approximate solutions of a nonlinear convection-diffusion problem. Adv. Differ. Equ.7 (2002) 419-440. · Zbl 1173.35563
[21] R. Eymard, T. Gallouët, R. Herbin and A. Michel, Convergence of a finite volume scheme for nonlinear degenerate parabolic equations. Numer. Math.92 (2002) 41-82. · Zbl 1005.65099 · doi:10.1007/s002110100342
[22] H. Holden, K.H. Karlsen, K.-A. Lie and N.H. Risebro, Splitting methods for partial differential equations with rough solutions. EMS Series of Lect. Math. Analysis and MATLAB programs. European Mathematical Society (EMS), Zürich (2010). · Zbl 1191.35005
[23] K.H. Karlsen and N.H. Risebro, Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients. ESAIM: M2AN35 (2001) 239-269. · Zbl 1032.76048 · doi:10.1051/m2an:2001114
[24] K.H. Karlsen, U. Koley N.H. Risebro, An error estimate for the finite difference approximation to degenerate convection-diffusion equations. Numer. Math.121 (2012) 367-395. · Zbl 1248.65098 · doi:10.1007/s00211-011-0433-9
[25] K.H. Karlsen, N.H. Risebro E.B. Storrøsten, L^{1} error estimates for difference approximations of degenerate convection-diffusion equations. Math. Comput.83 (2014) 2717-2762. · Zbl 1300.65067 · doi:10.1090/S0025-5718-2014-02818-4
[26] S.N. Kružkov, First order quasilinear equations with several independent variables. Mat. Sb. (N.S.)81 (1970) 228-255.
[27] N.V. Krylov, The rate of convergence of finite-difference approximations for Bellman equations with Lipschitz coefficients. Appl. Math. Optim.52 (2005) 365-399. · Zbl 1087.65100 · doi:10.1007/s00245-005-0832-3
[28] N.N. Kuznecov, The accuracy of certain approximate methods for the computation of weak solutions of a first order quasilinear equation. Ž. Vyčisl. Mat. i Mat. Fiz.16 (1976) 1489-1502, 1627.
[29] P.-L. Lions, B. Perthame and E. Tadmor, A kinetic formulation of multidimensional scalar conservation laws and related equations. J. Amer. Math. Soc.7 (1994) 169-191. · Zbl 0820.35094 · doi:10.1090/S0894-0347-1994-1201239-3
[30] C. Makridakis and B. Perthame, Optimal rate of convergence for anisotropic vanishing viscosity limit of a scalar balance law. SIAM J. Math. Anal.34 (2003) 1300-1307. · Zbl 1035.35068 · doi:10.1137/S0036141002407995
[31] M. Ohlberger, A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations. ESAIM: M2AN35 (2001) 355-387. · Zbl 0992.65100 · doi:10.1051/m2an:2001119
[32] N.H. Pavel, Differential equations, flow invariance and applications. Vol. 113 of Res. Notes Math. Pitman (Advanced Publishing Program), Boston, MA (1984).
[33] B. Perthame, Uniqueness and error estimates in first order quasilinear conservation laws via the kinetic entropy defect measure. J. Math. Pures Appl.77 (1998) 1055-1064. · Zbl 0919.35088 · doi:10.1016/S0021-7824(99)80003-8
[34] K. Sato, On the generators of non-negative contraction semigroups in Banach lattices. J. Math. Soc. Japan20 (1968) 423-436. · Zbl 0167.13601 · doi:10.2969/jmsj/02030423
[35] A.I. Vol’pert and S.I. Hudjaev, The Cauchy problem for second order quasilinear degenerate parabolic equations. Mat. Sb. (N.S.)78 (1969) 374-396.
[36] Z.Q. Wu and J.X. Yin, Some properties of functions in BV_{x} and their applications to the uniqueness of solutions for degenerate quasilinear parabolic equations. Northeast. Math. J.5 (1989) 395-422.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.