×

A wider convergence area for the MSTMAOR iteration methods for LCP. (English) Zbl 1342.65141

The authors develop a convergence theory to solve large sparse linear complementarity problems. Some numerical examples are given.

MSC:

65K05 Numerical mathematical programming methods
90C06 Large-scale problems in mathematical programming
90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
Full Text: DOI

References:

[1] Bai, Z.-Z.: Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 17, 917-933 (2010) · Zbl 1240.65181 · doi:10.1002/nla.680
[2] Bai, Z.-Z., Evans, D.J.: Matrix multisplitting methods with applications to linear complementarity problems: Parallel synchronous and chaotic methods. Reseaux et systemes repartis Calculateurs Paralleles 13, 125-154 (2001)
[3] Bai, Z.-Z., Evans, D.J.: Matrix multisplitting methods with applications to linear complementarity problems: Parallel asynchronous methods. Int. J. Comput. Math. 79, 205-232 (2002) · Zbl 1011.65033 · doi:10.1080/00207160211927
[4] Bai, Z.-Z., Sun, J.-C., Wang, D.-R.: A unified framework for the construction of various matrix multisplitting iterative methods for large sparse system of linear equations. Comput. Math. Appl. 32, 51-76 (1996) · Zbl 0870.65025 · doi:10.1016/S0898-1221(96)00207-6
[5] Bai, Z.-Z., Zhang, L.-L.: Modulus-based synchronous multisplitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 20, 425-439 (2013) · Zbl 1313.65131 · doi:10.1002/nla.1835
[6] Bai, Z.-Z., Zhang, L.-L.: Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems. Numer. Algoritm. 62, 59-77 (2013) · Zbl 1259.65088 · doi:10.1007/s11075-012-9566-x
[7] Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences, vol. 9. SIAM, Philadelphia (1994) · Zbl 0815.15016 · doi:10.1137/1.9781611971262
[8] Cvetković, Lj., Kostić, V.: A note on the convergence of the MSMAOR method for linear complementarity problems. Numer. Linear Algebra Appl. 21, 534-539 (2014) · Zbl 1340.65119
[9] Dong, J.-L., Jiang, M.-Q.: A modified modulus method for symmetric positive-definite linear complementarity problems. Numer. Linear Algebra Appl. 16, 129-143 (2009) · Zbl 1224.65152 · doi:10.1002/nla.609
[10] Hadjidimos, A., Tzoumas, M.: The principle of extrapolation and the Cayley transform. Linear Algebra Appl. 429, 2465-2480 (2008) · Zbl 1156.65027 · doi:10.1016/j.laa.2007.10.021
[11] Hadjidimos, A., Tzoumas, M.: Nonstationary extrapolated modulus algorithms for the solution of the linear complementarity problem. Linear Algebra Appl. 431, 197-210 (2008) · Zbl 1168.65027 · doi:10.1016/j.laa.2009.02.024
[12] Leenaerts, D.M.W., van Bokhoven, W.M.G.: Piecewise Linear Modelling and Analysis. Kluwer Academic, Dordrecht (1998) · Zbl 0969.94036 · doi:10.1007/978-1-4757-6190-0
[13] Murty, K.G.: Linear Complementarity, Linear and Nonlinear Programming. Heldermann, Berlin (1988) · Zbl 0634.90037
[14] O’Leary, D.P., White, R.E.: Multi-splittings of matrices and parallel solution of linear systems. SIAM J Algebraic Discret. Methods 6, 630-640 (1985) · Zbl 0582.65018 · doi:10.1137/0606062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.