×

Markov chain Monte Carlo solution of BK equation through Newton-Kantorovich method. (Markov chain Mote Carlo solution of BK equation through Newton-Kantorovich method.) (English) Zbl 1342.65003

Summary: We propose a new method for Monte Carlo solution of non-linear integral equations by combining the Newton-Kantorovich method for solving non-linear equations with the Markov Chain Monte Carlo (MCMC) method for solving linear equations. The Newton-Kantorovich method allows to express the non-linear equation as a system of the linear equations which then can be treated by the MCMC (random walk) algorithm. We apply this method to the Balitsky-Kovchegov (BK) equation describing evolution of gluon density at low \(x\). Results of numerical computations show that the MCMC method is both precise and efficient. The presented algorithm may be particularly suited for solving more complicated and higher-dimensional non-linear integral equation, for which traditional methods become unfeasible.

MSC:

65C05 Monte Carlo methods
81-08 Computational methods for problems pertaining to quantum theory

References:

[1] L. Gribov, E. Levin and M. Ryskin, Semihard processes in QCD, Phys. Rept.100 (1983) 1 [INSPIRE]. · doi:10.1016/0370-1573(83)90022-4
[2] J.L. Albacete and C. Marquet, Azimuthal correlations of forward di-hadrons in d+Au collisions at RHIC in the color glass condensate, Phys. Rev. Lett.105 (2010) 162301 [arXiv:1005.4065] [INSPIRE]. · doi:10.1103/PhysRevLett.105.162301
[3] A. Dumitru et al., The ridge in proton-proton collisions at the LHC, Phys. Lett.B 697 (2011) 21 [arXiv:1009.5295] [INSPIRE].
[4] K. Kutak and S. Sapeta, Gluon saturation in dijet production in p-Pb collisions at Large Hadron Collider, Phys. Rev.D 86 (2012) 094043 [arXiv:1205.5035] [INSPIRE].
[5] K. Dusling and R. Venugopalan, Evidence for BFKL and saturation dynamics from di-hadron spectra at the LHC, Phys. Rev.D 87 (2013) 051502 [arXiv:1210.3890] [INSPIRE].
[6] I. Balitsky, Operator expansion for high-energy scattering, Nucl. Phys.B 463 (1996) 99 [hep-ph/9509348] [INSPIRE]. · doi:10.1016/0550-3213(95)00638-9
[7] Y.V. Kovchegov, Small x F2structure function of a nucleus including multiple Pomeron exchanges, Phys. Rev.D 60 (1999) 034008 [hep-ph/9901281] [INSPIRE].
[8] J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The BFKL equation from the Wilson renormalization group, Nucl. Phys.B 504 (1997) 415 [hep-ph/9701284] [INSPIRE]. · doi:10.1016/S0550-3213(97)00440-9
[9] J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The Wilson renormalization group for low x physics: Towards the high density regime, Phys. Rev.D 59 (1998) 014014 [hep-ph/9706377] [INSPIRE].
[10] A. Kovner, J.G. Milhano and H. Weigert, Relating different approaches to nonlinear QCD evolution at finite gluon density, Phys. Rev.D 62 (2000) 114005 [hep-ph/0004014] [INSPIRE].
[11] E. Iancu, A. Leonidov and L.D. McLerran, Nonlinear gluon evolution in the color glass condensate. 1, Nucl. Phys.A 692 (2001) 583 [hep-ph/0011241] [INSPIRE]. · Zbl 0971.81173
[12] K. Kutak, K. Golec-Biernat, S. Jadach and M. Skrzypek, Nonlinear equation for coherent gluon emission, JHEP02 (2012) 117 [arXiv:1111.6928] [INSPIRE]. · Zbl 1309.81280 · doi:10.1007/JHEP02(2012)117
[13] K. Kutak, Nonlinear extension of the CCFM equation, arXiv:1206.1223 [INSPIRE].
[14] K. Kutak, Resummation in nonlinear equation for high energy factorisable gluon density and its extension to include coherence, JHEP12 (2012) 033 [arXiv:1206.5757] [INSPIRE]. · doi:10.1007/JHEP12(2012)033
[15] T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP05 (2006) 026 [hep-ph/0603175] [INSPIRE]. · Zbl 1368.81015 · doi:10.1088/1126-6708/2006/05/026
[16] M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J.C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE]. · doi:10.1140/epjc/s10052-008-0798-9
[17] H. Jung et al., The CCFM Monte Carlo generator CASCADE version 2.2.03, Eur. Phys. J.C 70 (2010) 1237 [arXiv:1008.0152] [INSPIRE]. · doi:10.1140/epjc/s10052-010-1507-z
[18] H. Kharraziha and L. Lönnblad, The linked dipole chain Monte Carlo, JHEP03 (1998) 006 [hep-ph/9709424] [INSPIRE]. · doi:10.1088/1126-6708/1998/03/006
[19] J.R. Andersen, L. Lönnblad and J.M. Smillie, A parton shower for high energy jets, JHEP07 (2011) 110 [arXiv:1104.1316] [INSPIRE]. · Zbl 1298.81426 · doi:10.1007/JHEP07(2011)110
[20] G. Forsythe and R. Leibler, Matrix inversion by a Monte Carlo method, Math. Tabl. Aids. Comput.4 (1950) 127. · doi:10.2307/2002508
[21] C. Flensburg, G. Gustafson and L. Lönnblad, Inclusive and exclusive observables from dipoles in high energy collisions, JHEP08 (2011) 103 [arXiv:1103.4321] [INSPIRE]. · doi:10.1007/JHEP08(2011)103
[22] A. Polyanin and A. Manzhirov, Handbook of mathematics for engineers and scientists, Chapman and Hall/CRC, U.K. (2006) · doi:10.1201/9781420010510
[23] R. Enberg, K.J. Golec-Biernat and S. Munier, The high energy asymptotics of scattering processes in QCD, Phys. Rev.D 72 (2005) 074021 [hep-ph/0505101] [INSPIRE].
[24] W. Wasow, A note on the inversion of matrices by random walks, Math. Tabl. Aids. Comput.6 (1952) 78. · Zbl 0048.11303 · doi:10.2307/2002546
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.