×

Symmetry-forced rigidity of frameworks on surfaces. (English) Zbl 1342.52022

Summary: A fundamental theorem of Laman characterises when a bar-joint framework realised generically in the Euclidean plane admits a non-trivial continuous deformation of its vertices. This has recently been extended in two ways. Firstly to frameworks that are symmetric with respect to some point group but are otherwise generic, and secondly to frameworks in Euclidean 3-space that are constrained to lie on 2-dimensional algebraic varieties. We combine these two settings and consider the rigidity of symmetric frameworks realised on such surfaces. First we establish necessary conditions for a framework to be symmetry-forced rigid for any group and any surface by setting up a symmetry-adapted rigidity matrix for such frameworks and by extending the methods by T. Jordán et al. [“Gain-sparsity and symmetry-forced rigidity in the plane”, Techn. Rep. TR-2012-17, Egerváry Research Group (2012)] to this new context. This gives rise to several new symmetry-adapted rigidity matroids on group-labelled quotient graphs. In the cases when the surface is a sphere, a cylinder or a cone we then also provide combinatorial characterisations of generic symmetry-forced rigid frameworks for a number of symmetry groups, including rotation, reflection, inversion and dihedral symmetry. The proofs of these results are based on some new Henneberg-type inductive constructions on the group-labelled quotient graphs that correspond to the bases of the matroids in question. For the remaining symmetry groups in 3-space – as well as for other types of surfaces – we provide some observations and conjectures.

MSC:

52C25 Rigidity and flexibility of structures (aspects of discrete geometry)
05C10 Planar graphs; geometric and topological aspects of graph theory
70B15 Kinematics of mechanisms and robots
05B35 Combinatorial aspects of matroids and geometric lattices
68R10 Graph theory (including graph drawing) in computer science

References:

[1] Abbot, T.: Generalizations of Kempe’s Universality Theorem, M.Sc. thesis, MIT (2008). http://web.mit.edu/tabbott/www/papers/mthesis · Zbl 1325.05048
[2] Asimov, L., Roth, B.: The rigidity of graphs. AMS 245, 279-289 (1978) · Zbl 0392.05026 · doi:10.1090/S0002-9947-1978-0511410-9
[3] Bishop, D.M.: Group Theory and Chemistry. Clarendon Press, Oxford (1973) · Zbl 1093.20500
[4] Connelly, R.: Generic global rigidity. Discrete Comput. Geom. 33, 549-563 (2005) · Zbl 1072.52016 · doi:10.1007/s00454-004-1124-4
[5] Connelly, R., Whiteley, W.: Second-order rigidity and pre-stress stability for tensegrity frameworks. SIAM J. Discrete Math. 9, 453-491 (1996) · Zbl 0855.52006 · doi:10.1137/S0895480192229236
[6] Fowler, P.W., Guest, S.D.: A symmetry extension of Maxwell’s rule for rigidity of frames. Int. J. Solids Struct. 37, 1793-1804 (2000) · Zbl 0973.74050 · doi:10.1016/S0020-7683(98)00326-6
[7] Graver, J., Servatius, B., Servatius, H.: Combinatorial Rigidity. Graduate Studies in Mathematics. AMS, Providence, RI (1993) · Zbl 0788.05001
[8] Jackson, B., McCourt, T., Nixon, A.: Necessary conditions for the generic global rigidity of frameworks on surfaces. Discrete Comput. Geom. 52(2), 344-360 (2014) · Zbl 1319.52028 · doi:10.1007/s00454-014-9616-3
[9] Jackson, B., Nixon, A.: Stress matrices and global rigidity of frameworks on surfaces. Discrete Comput. Geom. 54(3), 586-609 (2015) · Zbl 1326.52020 · doi:10.1007/s00454-015-9724-8
[10] Jordán, T., Kaszanitzky, V., Tanigawa, S.: Gain-sparsity and symmetry-forced rigidity in the plane. The EGRES technical report, TR-2012-17 · Zbl 1366.52021
[11] Kangwai, R., Guest, S.: Detection of finite mechanisms in symmetric structures. Int. J. Solids Struct. 36, 5507-5527 (1999) · Zbl 0964.74037 · doi:10.1016/S0020-7683(98)00234-0
[12] Kangwai, R.D., Guest, S.D.: Symmetry-adapted equilibrium matrices. Int. J. Solids Struct. 37, 1525-1548 (2000) · Zbl 0985.74041 · doi:10.1016/S0020-7683(98)00318-7
[13] Laman, G.: On graphs and rigidity of plane skeletal structures. J. Eng. Math. 4, 331-340 (1970) · Zbl 0213.51903 · doi:10.1007/BF01534980
[14] Lee, A., Streinu, I.: Pebble game algorithms and sparse graphs. Discrete Math. 308, 1425-1437 (2008) · Zbl 1136.05062 · doi:10.1016/j.disc.2007.07.104
[15] Malestein, J., Theran, L.: Frameworks with forced symmetry I: reflections and rotations. Discrete Comput. Geom. 54(2), 339-367 (2014) · Zbl 1332.52013 · doi:10.1007/s00454-015-9692-z
[16] Malestein, J., Theran, L.: Generic rigidity with forced symmetry and sparse colored graphs. In: Connelly, R., Weiss, A., Whiteley, W. (eds.) Rigidity and Symmetry. Fields Institute Communications, vol. 70, pp. 227-252 (2014). Springer, New York · Zbl 1333.52025
[17] Nixon, A., Owen, J.C.: An inductive construction of (2,1)-tight graphs. Contrib. Discrete Math. 9(2), 1-16 (2014) · Zbl 1317.52027
[18] Nixon, A., Owen, J.C., Power, S.C.: A characterisation of generically rigid frameworks on surfaces of revolution. SIAM J. Discrete Math. 28(4), 2008-2028 (2014) · Zbl 1315.52018 · doi:10.1137/130913195
[19] Nixon, A., Owen, J.C., Power, S.C.: Rigidity of frameworks supported on surfaces. SIAM J. Discrete Math. 26(4), 1733-1757 (2012) · Zbl 1266.52018 · doi:10.1137/110848852
[20] Nixon, A., Ross, E.: One brick at a time: a survey of inductive constructions in rigidity theory. In: Connelly, R., Weiss, A., Whiteley, W. (eds.) Rigidity and Symmetry, Fields InstituteCommunications vol. 70, pp. 303-324 (2014) · Zbl 1320.52024
[21] Owen, J.C., Power, S.C.: Frameworks, symmetry and rigidity. Int. J. Comput. Geom. Appl. 20, 723-750 (2010) · Zbl 1222.52022 · doi:10.1142/S0218195910003505
[22] Ross, E.: Inductive constructions for frameworks on a two-dimensional fixed torus. Discrete Comput. Geom. 54(1), 78-109 (2015) · Zbl 1327.52038 · doi:10.1007/s00454-015-9697-7
[23] Saliola, F., Whiteley, W.: Some notes on the equivalence of first-order rigidity in various geometries, preprint. (2009). arXiv:0709.3354 · Zbl 0714.05057
[24] Schulze, B.: Block-diagonalized rigidity matrices of symmetric frameworks and applications. Beitr. Algebra und Geometrie 51(2), 427-466 (2010) · Zbl 1342.52023
[25] Schulze, B.: Injective and non-injective realizations with symmetry. Contrib. Discrete Math. 5, 59-89 (2010) · Zbl 1189.52021
[26] Schulze, B.: Symmetry as a sufficient condition for a finite flex. SIAM J. Discrete Math. 24(4), 1291-1312 (2010) · Zbl 1218.52020 · doi:10.1137/090776238
[27] Schulze, B.: Symmetric versions of Laman’s theorem. Discrete Comput. Geom. 44(4), 946-972 (2010) · Zbl 1211.52023 · doi:10.1007/s00454-009-9231-x
[28] Schulze, B., Sljoka, A., Whiteley, W.: How does symmetry impact the flexibility of proteins?. Philos. Trans. R. Soc. A 372(2008) (2014). doi:10.1098/rsta.2012.0041 · Zbl 1353.92070
[29] Schulze, B., Tanigawa, S.: Infinitesimal rigidity of symmetric bar-joint frameworks. SIAM J. Discrete Math. 29(3), 1259-1286 (2015) · Zbl 1327.52039 · doi:10.1137/130947192
[30] Schulze, B., Whiteley, W.: The orbit rigidity matrix of a symmetric framework. Discrete Comput. Geom. 46(3), 561-598 (2011) · Zbl 1235.05040 · doi:10.1007/s00454-010-9317-5
[31] Schulze, B., Whiteley, W.: Coning, symmetry, and spherical frameworks. Discrete Comput. Geom. 48(3), 622-657 (2012) · Zbl 1254.52007 · doi:10.1007/s00454-012-9427-3
[32] Tanigawa, S.: Matroids of gain graphs in applied discrete geometry. Trans. Am. Math. Soc. 367, 8597-8641 (2015) · Zbl 1325.05048 · doi:10.1090/tran/6401
[33] Tay, T.-S., Whiteley, W.: Generating isostatic frameworks. Struct. Topol. 11, 21-69 (1985) · Zbl 0574.51025
[34] Theran, L.: Henneberg constructions and covers of cone-Laman graphs, preprint. (2012). arXiv:1204.0503 · Zbl 0724.52014
[35] Whiteley, W.: Vertex splitting in isostatic frameworks. Struct. Topol. 16, 23-30 (1990) · Zbl 0724.52014
[36] Whiteley, W.: Some matroids from discrete applied geometry. Contemp. Math. AMS 197, 171-311 (1996) · Zbl 0860.05018 · doi:10.1090/conm/197/02540
[37] Zaslavsky, T.: Biased graphs “I”: Bias, balance, and gains. J. Combin. Theory Ser. B 47, 32-52 (1989) · Zbl 0714.05057 · doi:10.1016/0095-8956(89)90063-4
[38] Zaslavsky, T.: A mathematical bibliography of signed and gain graphs and allied areas. Electron. J. Combin. 5: Dynamic Surveys 8, 124 pp. (electronic) (1998). Manuscript prepared with Marge Pratt · Zbl 0898.05001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.