×

A classification of slow convergence near parametric periodic points of discrete dynamical systems. (English) Zbl 1342.37031

Summary: We study the phenomenon of slow convergence in families of discrete dynamical systems where the iteration function has a Puiseux series representation. Such occurrence consists in the slow convergence of orbits near non-hyperbolic parametric periodic points. We provide a precise new definition of the slowness of convergence which is based on literature results for the critical exponents associated with parametric periodic points. Such exponents establish a general classification for slow systems and provide a measure of rates of convergence. For dynamical systems whose iteration functions have Taylor series expansions, the new definition is natural with wider applicability. However, it can be also used for iteration functions where a more sophisticated approach, such as a Lagrange expansion, is needed. In addition, we show that even for such iteration functions, the critical exponent can be easily computed. The presented theoretical results are illustrated by numerical examples having different rates of convergence.

MSC:

37C75 Stability theory for smooth dynamical systems
39A30 Stability theory for difference equations
37M05 Simulation of dynamical systems
65P40 Numerical nonlinear stabilities in dynamical systems
65Q10 Numerical methods for difference equations
Full Text: DOI

References:

[1] DOI: 10.1007/978-3-642-59281-2 · doi:10.1007/978-3-642-59281-2
[2] DOI: 10.1145/964723.383080 · doi:10.1145/964723.383080
[3] DOI: 10.1023/A:1006145903624 · Zbl 0972.34044 · doi:10.1023/A:1006145903624
[4] DOI: 10.1137/090774100 · Zbl 1211.90225 · doi:10.1137/090774100
[5] DOI: 10.1017/CBO9780511526121 · doi:10.1017/CBO9780511526121
[6] DOI: 10.1080/1023619031000078315 · Zbl 1054.47043 · doi:10.1080/1023619031000078315
[7] DOI: 10.1007/BF01020332 · Zbl 0509.58037 · doi:10.1007/BF01020332
[8] DOI: 10.1007/BF01107909 · Zbl 0515.58028 · doi:10.1007/BF01107909
[9] DOI: 10.1017/CBO9781139012843 · Zbl 1238.94027 · doi:10.1017/CBO9781139012843
[10] DOI: 10.1007/s12532-012-0050-3 · Zbl 1272.65051 · doi:10.1007/s12532-012-0050-3
[11] DOI: 10.1016/0375-9601(81)90362-5 · doi:10.1016/0375-9601(81)90362-5
[12] DOI: 10.1142/3830 · doi:10.1142/3830
[13] DOI: 10.1145/301970.301971 · Zbl 1065.68667 · doi:10.1145/301970.301971
[14] Hoyos B., Lat. Am. Appl. Res. 34 (1) pp 17– (2004)
[15] DOI: 10.1090/S0002-9939-01-06001-4 · Zbl 1012.12007 · doi:10.1090/S0002-9939-01-06001-4
[16] DOI: 10.1007/978-3-642-24488-9 · Zbl 1237.90001 · doi:10.1007/978-3-642-24488-9
[17] DOI: 10.1016/j.enganabound.2013.10.016 · Zbl 1297.74148 · doi:10.1016/j.enganabound.2013.10.016
[18] Solis F.J., Nonlinear Stud. 8 (3) pp 389– (2001)
[19] DOI: 10.1016/S0893-9659(04)90132-2 · Zbl 1059.37027 · doi:10.1016/S0893-9659(04)90132-2
[20] DOI: 10.1016/j.aml.2003.06.014 · Zbl 1068.35062 · doi:10.1016/j.aml.2003.06.014
[21] DOI: 10.1155/S0161171204306253 · Zbl 1068.37024 · doi:10.1155/S0161171204306253
[22] DOI: 10.1006/jmbi.2000.3758 · doi:10.1006/jmbi.2000.3758
[23] DOI: 10.1017/CBO9780511608759 · doi:10.1017/CBO9780511608759
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.