×

Normal forms near a symmetric planar saddle connection. (English) Zbl 1342.34057

This paper studies vector fields of the form \[ \dot{x}=\left(q/2 + O(1-x^2)\right)(1-x^2)+O(y),\quad \dot{y} = \left(p x + O(1-x^2)\right) y + O(y^2), \] which contain a separatrix connection between hyperbolic saddles with opposite eigenvalues where the connection is fixed. The author provide smooth semi-local normal forms in the vicinity of the connection, both in the resonant and non-resonant case. First, a conjugacy is constructed near the separatrix. Then, a smooth change of coordinates is realized by generalizing known local results near the hyperbolic points.
The author applies the method of two-step procedure in the study of local normal forms near singularities: first establish a “formal normal form”, and latter eliminate the flat terms after applying Borel’s theorem. In particularly, the resonance monomials are taken as \[ \left((1-x^2) y\right)^n\quad \text{ and } \quad x\left((1-x^2)y\right)^2 \] for the case \(p=q=1\), and \[ \left((1-x^2)^p y^q\right)^n\quad \text{ and } \quad x\left((1-x^2)^py^q\right)^2 \] when \((p,q)\not=(1,1)\).

MSC:

34C20 Transformation and reduction of ordinary differential equations and systems, normal forms
37G05 Normal forms for dynamical systems
37C10 Dynamics induced by flows and semiflows
34C37 Homoclinic and heteroclinic solutions to ordinary differential equations
Full Text: DOI

References:

[1] Chow, S.; Li, C.; Wang, D., Normal Forms and Bifurcation of Planar Vector Fields (2008), Cambridge University Press
[2] Dumortier, F.; Llibre, J.; Artés, J., Qualitative Theory of Planar Differential Systems (2006), Springer: Springer Berlin, Heidelberg, New York · Zbl 1110.34002
[3] Chen, K. T., Equivalence and decomposition of vector fields about an elementary critical point, Amer. J. Math., 85, 693-722 (1963) · Zbl 0119.07505
[4] Sternberg, S., On the structure of local homeomorphisms of Euclidean n-space ii, Amer. J. Math., 80, 623-631 (1958) · Zbl 0083.31406
[5] Dumortier, F.; Roussarie, R.; Sotomayor, J., Bifurcations of cuspidal loops, Nonlinearity, 10, 6, 1369-1408 (1997) · Zbl 0908.58043
[6] Lombardi, E.; Stolovitch, L., Normal forms of analytic perturbations of quasihomogeneous vector fields: rigidity, invariant analytic sets and exponentially small approximation, Ann. Sci. Éc. Norm. Supér. (4), 43, 4, 659-718 (2010) · Zbl 1202.37071
[7] Loray, F., Réduction formelle des singularités cuspidales de champs de vecteurs analytiques, J. Differential Equations, 158, 1, 152-173 (1999) · Zbl 0985.37014
[8] Panazzolo, D.; Roussarie, R., Bifurcations of cuspidal loops preserving nilpotent singularities, Mosc. Math. J., 5, 1, 207-244 (2005) · Zbl 1090.37037
[9] Caubergh, M., Hilbert’s sixteenth problem for polynomial Liénard equations, Qual. Theory Dyn. Syst., 11, 1, 3-18 (2012) · Zbl 1272.34002
[10] Maesschalck, P. D.; Rebollo-Perdomo, S.; Torregrosa, J., Cyclicity of a fake saddle inside the quadratic vector fields, J. Differential Equations, 258, 2, 588-620 (2015) · Zbl 1314.34066
[11] Dumortier, F.; Herssens, C., Polynomial Liénard equations near infinity, J. Differential Equations, 153, 1, 1-29 (1999) · Zbl 0928.34028
[12] Rousseau, C.; Zhu, H., PP-graphics with a nilpotent elliptic singularity in quadratic systems and Hilbert’s 16th problem, J. Differential Equations, 196, 1, 169-208 (2004) · Zbl 1046.34055
[13] Dumortier, F.; Roussarie, R., Birth of canard cycles, Discrete Contin. Dyn. Syst. Ser. S, 2, 4, 723-781 (2009) · Zbl 1186.34080
[14] Belitskii, G.; Tkachenko, V., One-Dimensional Functional Equations, Operator Theory: Advances and Applications, vol. 144 (2003), Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 1069.39027
[15] Hitchin, N., Vector fields on the circle, (Mechanics, Analysis and Geometry: 200 Years After Lagrange. Mechanics, Analysis and Geometry: 200 Years After Lagrange, North-Holland Delta Series (1991), North-Holland), 359-378 · Zbl 0718.53020
[16] Il’yashenko, Y. S.; Yakovenko, S., Finitely smooth normal forms of local families of diffeomorphisms and vector fields, Russian Math. Surveys, 46, 1, 1-43 (1991) · Zbl 0744.58006
[17] Roussarie, R., Bifurcations of Planar Vector Fields and Hilbert’s 16th Problem, Modern Birkhäuser Classics (1998), Birkhäuser
[18] Morsalani, M. E., Bifurcations de polycycles infinis pour les champs de vecteurs polynomiaux du plan, Ann. Fac. Sci. Toulouse Math. (6), 3, 3, 387-410 (1994) · Zbl 0831.34038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.