×

Two interacting coordinate Hopf algebras of affine groups of formal series on a category. (English) Zbl 1342.16029

Let \(R\) be any ring. There are two group structures on formal series in one variable over \(R\); the first one is \(G=1+xR[[x]]\) with the product, the second one is \(H=x+x^2R[[x]]\), with the composition. Moreover, \(H\) acts on \(G\) giving a semidirect product. These three groups are affine, so have a Hopf algebra of coordinates. This is generalized to locally finite categories. If \(C\) is such a category, it admits a large algebra, with a Cauchy-type product, and the set \(G\) of formal series in this large algebra such that the constant term is \(1\) is a group for the product. Under technical conditions, a group \(H\) of substitutions also exists. It is proved that both of these groups are affine, so have a coordinate Hopf algebra, which are free commutative algebras. Moreover, the action of \(H\) over \(G\), inducing a semidirect product, induces, at the level of their coordinate Hopf algebras, a smash coproduct.

MSC:

16T05 Hopf algebras and their applications
16T30 Connections of Hopf algebras with combinatorics
14L17 Affine algebraic groups, hyperalgebra constructions
20J99 Connections of group theory with homological algebra and category theory
16W60 Valuations, completions, formal power series and related constructions (associative rings and algebras)
Full Text: DOI

References:

[1] North-Holland Mathematical Studies 157 (1989)
[2] Encyclopedia of Mathematics and Its Applications 137 (2010)
[3] (French Language), Habilitation à Diriger des Recherches en Mathématiques (2011)
[4] Pure and Applied Mathematics 235 (2001)
[5] Graduate Texts in Mathematics 155 (2010)
[6] (1970)
[7] DOI: 10.2307/2373319 · Zbl 0213.22702 · doi:10.2307/2373319
[8] Graduate Texts in Mathematics 5 (1998)
[9] Faà di Bruno Hopf algebras
[10] Studies in Applied Mathematics 61 pp 93– (1979) · Zbl 0471.05020 · doi:10.1002/sapm197961293
[11] DOI: 10.1016/0022-4049(94)90105-8 · Zbl 0808.05101 · doi:10.1016/0022-4049(94)90105-8
[12] DOI: 10.4153/CJM-1954-031-9 · Zbl 0058.02201 · doi:10.4153/CJM-1954-031-9
[13] DOI: 10.1016/j.aim.2007.12.003 · Zbl 1158.16020 · doi:10.1016/j.aim.2007.12.003
[14] (1997)
[15] Logic without self-deductibility, logical universalis (2005)
[16] (1989)
[17] Mathematical Surveys 7 (1961)
[18] DOI: 10.1007/s00233-010-9265-7 · Zbl 1242.20065 · doi:10.1007/s00233-010-9265-7
[19] DOI: 10.1016/0097-3165(80)90083-7 · Zbl 0449.05004 · doi:10.1016/0097-3165(80)90083-7
[20] Cahiers de Topologie et Géométrie Différentielle 16 pp 280– (1975)
[21] Theory and Applications of Categories 24 pp 221– (2010)
[22] (2006)
[23] DOI: 10.1016/0001-8708(72)90002-3 · Zbl 0232.18009 · doi:10.1016/0001-8708(72)90002-3
[24] (1998)
[25] (1974)
[26] DOI: 10.1016/0021-8693(69)90071-4 · Zbl 0203.31601 · doi:10.1016/0021-8693(69)90071-4
[27] DOI: 10.1016/0021-8693(77)90208-3 · Zbl 0353.16004 · doi:10.1016/0021-8693(77)90208-3
[28] DOI: 10.1016/0021-8693(85)90124-3 · Zbl 0549.16003 · doi:10.1016/0021-8693(85)90124-3
[29] Advances and Applications in Discrete Mathematics 6 (1) pp 11– (2010)
[30] DOI: 10.1016/j.aam.2009.08.003 · Zbl 1235.16032 · doi:10.1016/j.aam.2009.08.003
[31] Springer Series in Computational Mathematics 31 (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.