×

The cone spanned by maximal Cohen-Macaulay modules and an application. (English) Zbl 1342.13016

Let \(R\) be a Noetherian local domain of dimension \(d\). The authors introduce two notions: the Cohen-Macaulay cone and test modules of \(R\). They recall the Grothendieck group \(\overline{G_0(R)}\) of finitely generated \(R\)-modules modulo numerical equivalence, with rank \(\rho(R)\). Inside \(\mathbb R^{\rho(R)} = \overline{G_0(R)} \otimes_{\mathbb Z} \mathbb R\) they define the Cohen-Macaulay cone of \(R\) to be the cone consisting of all non-negative linear combinations of maximal Cohen-Macaulay modules. A module \(M\) is a test module if \(M\) is a maximal Cohen-Macaulay module such that its Todd class consists of only the top term. As an application, they produce various examples of Hilbert-Kunz functions in the polynomial type: for any given integers \(\epsilon_i = 0, \pm 1 \;(d/2 < i < d)\) they construct a \(d\)-dimensional Cohen-Macaulay local ring \(R\) of characteristic \(p\) and a maximal primary ideal \(I\) of \(R\) such that the function \(\ell_R(R/I^{[p^n]})\) is a polynomial in \(p^n\) of degree \(d\) whose coefficient of \((p^n)^i\) is the product of \(\epsilon_i\) and a positive rationl number for \(d/2 < i < d\). The existence of such a ring is proved by using Segre products. Test modules are not known to always exist, but they are shown to exist in this case.

MSC:

13C14 Cohen-Macaulay modules
13D15 Grothendieck groups, \(K\)-theory and commutative rings
13D40 Hilbert-Samuel and Hilbert-Kunz functions; Poincaré series
14C17 Intersection theory, characteristic classes, intersection multiplicities in algebraic geometry
14C40 Riemann-Roch theorems

References:

[1] Brenner, Holger, The Hilbert-Kunz function in graded dimension two, Comm. Algebra, 35, 10, 3199-3213 (2007) · Zbl 1155.13004 · doi:10.1080/00914030701410203
[2] Bruns, Winfried; Herzog, J{\"u}rgen, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics 39, xii+403 pp. (1993), Cambridge University Press, Cambridge · Zbl 0788.13005
[3] [CK1] C-Y. J. Chan and K. Kurano, Hilbert-Kunz functions over rings regular in codimension one, to appear in Comm. Algebra. · Zbl 1346.13007
[4] Chan, C.-Y. Jean; Miller, Claudia, A Riemann-Roch formula for the blow-up of a nonsingular affine scheme, J. Algebra, 322, 9, 3003-3025 (2009) · Zbl 1191.14014 · doi:10.1016/j.jalgebra.2009.07.016
[5] Dao, Hailong, Decent intersection and Tor-rigidity for modules over local hypersurfaces, Trans. Amer. Math. Soc., 365, 6, 2803-2821 (2013) · Zbl 1285.13018 · doi:10.1090/S0002-9947-2012-05574-7
[6] [DaoKurano] H. L. Dao and K. Kurano, Hochster’s theta pairing and numerical equivalence, to appear in J. K-Theory. · Zbl 1326.13013
[7] [DK2] H. L. Dao and K. Kurano, Boundary and shape of Cohen-Macaulay cone, to appear in Math. Ann. · Zbl 1346.13020
[8] Fakhruddin, N.; Trivedi, V., Hilbert-Kunz functions and multiplicities for full flag varieties and elliptic curves, J. Pure Appl. Algebra, 181, 1, 23-52 (2003) · Zbl 1090.14503 · doi:10.1016/S0022-4049(02)00304-3
[9] Fulton, William, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] 2, xi+470 pp. (1998), Springer-Verlag, Berlin · Zbl 0885.14002 · doi:10.1007/978-3-662-02421-8
[10] Goto, Shiro; Watanabe, Keiichi, On graded rings. I, J. Math. Soc. Japan, 30, 2, 179-213 (1978) · Zbl 0371.13017 · doi:10.2969/jmsj/03020179
[11] [HY] M. Hochster and Y. Yao, Second coefficients of Hilbert-Kunz functions for domains, preliminary preprint: http://www.math.lsa.umich.edu/\( \sim\) hochster/hk.pdf.
[12] Huneke, Craig; McDermott, Moira A.; Monsky, Paul, Hilbert-Kunz functions for normal rings, Math. Res. Lett., 11, 4, 539-546 (2004) · Zbl 1099.13508 · doi:10.4310/MRL.2004.v11.n4.a11
[13] Kurano, Kazuhiko, A remark on the Riemann-Roch formula on affine schemes associated with Noetherian local rings, Tohoku Math. J. (2), 48, 1, 121-138 (1996) · Zbl 0882.14002 · doi:10.2748/tmj/1178225414
[14] Kurano, Kazuhiko, Test modules to calculate Dutta multiplicities, J. Algebra, 236, 1, 216-235 (2001) · Zbl 0979.13015 · doi:10.1006/jabr.2000.8507
[15] Kurano, Kazuhiko, On Roberts rings, J. Math. Soc. Japan, 53, 2, 333-355 (2001) · Zbl 1050.13012 · doi:10.2969/jmsj/05320333
[16] Kurano, Kazuhiko, Numerical equivalence defined on Chow groups of Noetherian local rings, Invent. Math., 157, 3, 575-619 (2004) · Zbl 1070.14007 · doi:10.1007/s00222-004-0361-8
[17] Kurano, Kazuhiko, The singular Riemann-Roch theorem and Hilbert-Kunz functions, \linebreak J. Algebra, 304, 1, 487-499 (2006) · Zbl 1109.13015 · doi:10.1016/j.jalgebra.2005.11.019
[18] Kurano, Kazuhiko; Roberts, Paul C., Adams operations, localized Chern characters, and the positivity of Dutta multiplicity in characteristic \(0\), Trans. Amer. Math. Soc., 352, 7, 3103-3116 (2000) · Zbl 0959.13004 · doi:10.1090/S0002-9947-00-02589-7
[19] [MacDonnell] L. MacDonnell, A note on a conjecture of Watanabe and Yoshida, arXiv: 10044224.
[20] Monsky, P., The Hilbert-Kunz function, Math. Ann., 263, 1, 43-49 (1983) · Zbl 0509.13023 · doi:10.1007/BF01457082
[21] Roberts, Paul, Intersection theorems. Commutative algebra, Berkeley, CA, 1987, Math. Sci. Res. Inst. Publ. 15, 417-436 (1989), Springer, New York · Zbl 0734.13009 · doi:10.1007/978-1-4612-3660-3\_23
[22] Roberts, Paul C., Multiplicities and Chern classes in local algebra, Cambridge Tracts in Mathematics 133, xii+303 pp. (1998), Cambridge University Press, Cambridge · Zbl 0917.13007 · doi:10.1017/CBO9780511529986
[23] Roberts, Paul C.; Srinivas, V., Modules of finite length and finite projective dimension, Invent. Math., 151, 1, 1-27 (2003) · Zbl 1061.13010 · doi:10.1007/s002220200217
[24] Roberts, Paul; Singh, Anurag K., Reconciling Riemann-Roch results. Commutative algebra and its connections to geometry, Contemp. Math. 555, 165-172 (2011), Amer. Math. Soc., Providence, RI · Zbl 1237.14021 · doi:10.1090/conm/555/10996
[25] Serre, Jean-Pierre, Local algebra, Springer Monographs in Mathematics, xiv+128 pp. (2000), Springer-Verlag, Berlin · Zbl 0959.13010 · doi:10.1007/978-3-662-04203-8
[26] Srinivas, V., Algebraic \(K\)-theory, Progress in Mathematics 90, xviii+341 pp. (1996), Birkh\"auser Boston, Inc., Boston, MA · Zbl 0860.19001 · doi:10.1007/978-0-8176-4739-1
[27] Yoshino, Yuji, Cohen-Macaulay modules over Cohen-Macaulay rings, London Mathematical Society Lecture Note Series 146, viii+177 pp. (1990), Cambridge University Press, Cambridge · Zbl 0745.13003 · doi:10.1017/CBO9780511600685
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.