×

A fully coupled diffusional-mechanical formulation: numerical implementation, analytical validation, and effects of plasticity on equilibrium. (English) Zbl 1341.74157

Summary: A macroscopic coupled stress-diffusion theory which accounts for the effects of nonlinear material behaviour, based on the framework proposed by Cahn and Larché, is presented and implemented numerically into the finite element method. The numerical implementation is validated against analytical solutions for different boundary valued problems. Particular attention is payed to the open system elastic constants, i.e. those derived at constant diffusion potential, since they enable, under circumstances, the equilibrium composition field for any generic chemical-mechanical coupled problem to be obtained through the solution of an equivalent elastic problem. Finally, the effects of plasticity on the overall equilibrium state of the coupled problem solution are discussed.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
35Q74 PDEs in connection with mechanics of deformable solids

References:

[1] Abrivard G., Busso E.P., Forest S., Appolaire B.: Phase field modelling of grain boundary motion driven by curvature and stored energy gradients. part I: theory and numerical implementation. Philos. Mag. 92(28-30), 3618-3642 (2012) · doi:10.1080/14786435.2012.713135
[2] Anand L.: A thermo-mechanically-coupled theory accounting for hydrogen diffusion and large elastic-viscoplastic deformations of metals. Int. J. Solids Struct. 48(6), 962-971 (2011) · Zbl 1236.74035 · doi:10.1016/j.ijsolstr.2010.11.029
[3] Ballufi R.W., Allen S.M., Carter W.C.: Kinematics of Materials. Wiley, New York (2005) · doi:10.1002/0471749311
[4] Besson J., Cailletaud G., Chaboche J.L., Forest S.: Nonlinear Mechanics of Materials. Springer, Berlin (2010)
[5] Cahn J.: Thermodynamic aspects of cottrell atmospheres. Philos. Mag. 0, 1-6 (2013)
[6] Cahn J., Larché F.: A linear theory of thermochemical equilibrium of solids under stress. Acta Metall. 21, 1051-1063 (1973) · doi:10.1016/0001-6160(73)90021-7
[7] Cahn J., Larché F.: The interactions of composition and stress in crystalline solids. Acta Metall. 33, 331-357 (1985) · doi:10.1016/0001-6160(85)90077-X
[8] Clouet E.: The vacancyedge dislocation interaction in fcc metals: a comparison between atomic simulations and elasticity theory. Acta Mater. 54(13), 3543-3552 (2006) · doi:10.1016/j.actamat.2006.03.043
[9] Cottrell A.: An Introduction to Metallurgy. Edward Arnold, London (1975)
[10] Frost H., Ashby F.: Deformation-mechanism maps: the plasticity and creep of metals and ceramics. Pergamon Press, Oxford (1982)
[11] Hirth J.P., Lothe J.: Theory of Dislocation. 2nd edn. Wiley, New York (1982) · Zbl 0096.45303
[12] Lemaitre J., Chaboche J.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (1994)
[13] Maugin G.A.: On the thermomechanics of continuous media with diffusion and/or weak nonlocality. Arch. Appl. Mech. 75(10-12), 723-738 (2006) · Zbl 1168.74305 · doi:10.1007/s00419-006-0062-4
[14] Millett P.C., El-Azab A., Rokkam S., Tonks M., Wolf D.: Phase-field simulation of irradiated metals part I: void kinetics. Comput. Mater. Sci. 50, 949-959 (2011) · doi:10.1016/j.commatsci.2010.10.034
[15] Paukshto M.: Diffusion-induced stresses in solids. Int. J. Fract. 97(1-4), 227-236 (1999) · doi:10.1023/A:1018618918888
[16] Pavlina V., Podstrigach Y.: Residual stresses due to diffusion in an elastic homogeneous plate Sov.. Mater. Sci. 4(4), 279-283 (1971) doi: 10.1007/BF00722614 · doi:10.1007/BF00722614
[17] Podstrigach Y., Pavlina V.: Differential equations of thermodynamic processes in n-component solid solutions Sov.. Mater. Sci. 1(4), 259-264 (1966) doi: 10.1007/BF00714880 · doi:10.1007/BF00714880
[18] Podstrigach Y., Shevchuk P.: Diffusion phenomena and stress relaxation in the vicinity of a spherical void Sov.. Mater. Sci. 4(2), 140-145 (1969) doi: 10.1007/BF00715566 · doi:10.1007/BF00715566
[19] Rauh H, Simon D: Diffusion process of point-defects in the stress-field of edge dislocations. Phys. Status Solidi 46(2), 499-510 (1978) · doi:10.1002/pssa.2210460213
[20] Shewmon P.: Diffusion in Solids. Wiley, New York (1989)
[21] Simo J., Hughes T.: Computational Inelasticity. Springer, Berlin (1997) · Zbl 0934.74003
[22] Thomas J., Chopin C.: Modeling of coupled deformation-diffusion in non-porous solids. Int. J. Eng. Sci. 37(1), 1-24 (1999) · doi:10.1016/S0020-7225(98)00029-9
[23] Was G.S.: Fundamentals of Radiation Materials Sciences. Springer, Berlin (2007)
[24] Xuan, F.Z., Shao, S.S., Wang, Z., Tu, S.T.: Coupling effects of chemical stresses and external mechanical stresses on diffusion. J. Phys. D Appl. Phys. 42(1), 015401 (2009)
[25] Yang F.: Interaction between diffusion and chemical stresses. Mater. Sci. Eng. A 409, 153-159 (2005) · doi:10.1016/j.msea.2005.05.117
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.