×

Optimal large-scale quantum state tomography with Pauli measurements. (English) Zbl 1341.62116

Summary: Quantum state tomography aims to determine the state of a quantum system as represented by a density matrix. It is a fundamental task in modern scientific studies involving quantum systems. In this paper, we study estimation of high-dimensional density matrices based on Pauli measurements. In particular, under appropriate notion of sparsity, we establish the minimax optimal rates of convergence for estimation of the density matrix under both the spectral and Frobenius norm losses; and show how these rates can be achieved by a common thresholding approach. Numerical performance of the proposed estimator is also investigated.

MSC:

62H12 Estimation in multivariate analysis
81P50 Quantum state estimation, approximate cloning
62C20 Minimax procedures in statistical decision theory
62P35 Applications of statistics to physics
81P45 Quantum information, communication, networks (quantum-theoretic aspects)
81P68 Quantum computation

References:

[1] Alquier, P., Butucea, C., Hebiri, M. and Meziani, K. (2013). Rank penalized estimation of a quantum system. Phys. Rev. A 88 032133.
[2] Artiles, L. M., Gill, R. D. and Guţă, M. I. (2005). An invitation to quantum tomography. J. R. Stat. Soc. Ser. B. Stat. Methodol. 67 109-134. · Zbl 1060.62137 · doi:10.1111/j.1467-9868.2005.00491.x
[3] Aspuru-Guzik, A., Dutoi, A. D., Love, P. J. and Head-Gordon, M. (2005). Simulated quantum computation of molecular energies. Science 309 1704-1707.
[4] Aubry, J.-M., Butucea, C. and Meziani, K. (2009). State estimation in quantum homodyne tomography with noisy data. Inverse Probl. 25 015003, 22. · Zbl 1155.81015 · doi:10.1088/0266-5611/25/1/015003
[5] Benenti, G., Casati, G. and Strini, G. (2004). Principles of Quantum Computation and Information. Vol. I : Basic Concepts . World Scientific, River Edge, NJ. · Zbl 1119.81001
[6] Benenti, G., Casati, G. and Strini, G. (2007). Principles of Quantum Computation and Information. Vol. II : Basic Tools and Special Topics . World Scientific, Hackensack, NJ. · Zbl 1119.81002
[7] Berry, D. W., Childs, A. M., Cleve, R., Kothari, R. and Somma, R. D. (2014). Exponential improvement in precision for simulating sparse Hamiltonians. In STOC’ 14 -Proceedings of the 2014 ACM Symposium on Theory of Computing 283-292. ACM, New York. · Zbl 1315.68133 · doi:10.1145/2591796.2591854
[8] Boixo, S., Rnnow, T. F., Isakov, S. V., Wang, Z., Wecker, D., Lidar, D. A., Martinis, J. M. and Troyer, M. (2014). Evidence for quantum annealing with more than one hundred qubits. Nature Physics 10 218-224.
[9] Britton, J. W., Sawyer, B. C., Keith, A., Wang, C.-C. J., Freericks, J. K., Uys, H., Biercuk, M. J. and Bollinger, J. J. (2012). Engineered 2D Ising interactions on a trapped-ion quantum simulator with hundreds of spins. Nature 484 489-492. · Zbl 0034.01008
[10] Brumfiel, G. (2012). Simulation: Quantum leaps. Nature 491 322-324.
[11] Bunea, F., She, Y. and Wegkamp, M. H. (2011). Optimal selection of reduced rank estimators of high-dimensional matrices. Ann. Statist. 39 1282-1309. · Zbl 1216.62086 · doi:10.1214/11-AOS876
[12] Bunea, F., She, Y. and Wegkamp, M. H. (2012). Joint variable and rank selection for parsimonious estimation of high-dimensional matrices. Ann. Statist. 40 2359-2388. · Zbl 1373.62246 · doi:10.1214/12-AOS1039
[13] Butucea, C., Guţă, M. and Artiles, L. (2007). Minimax and adaptive estimation of the Wigner function in quantum homodyne tomography with noisy data. Ann. Statist. 35 465-494. · Zbl 1117.62027 · doi:10.1214/009053606000001488
[14] Cai, T. T. and Zhang, A. (2015). ROP: Matrix recovery via rank-one projections. Ann. Statist. 43 102-138. · Zbl 1308.62120 · doi:10.1214/14-AOS1267
[15] Cai, T. T. and Zhou, H. H. (2012). Optimal rates of convergence for sparse covariance matrix estimation. Ann. Statist. 40 2389-2420. · Zbl 1373.62247 · doi:10.1214/12-AOS998
[16] Candès, E. J. and Plan, Y. (2009). Matrix completion with noise. Proceedings of the IEEE 98 925-936.
[17] Candès, E. J. and Plan, Y. (2011). Tight oracle inequalities for low-rank matrix recovery from a minimal number of noisy random measurements. IEEE Trans. Inform. Theory 57 2342-2359. · Zbl 1366.90160 · doi:10.1109/TIT.2011.2111771
[18] Candès, E. J. and Recht, B. (2009). Exact matrix completion via convex optimization. Found. Comput. Math. 9 717-772. · Zbl 1219.90124 · doi:10.1007/s10208-009-9045-5
[19] Candès, E. J. and Tao, T. (2010). The power of convex relaxation: Near-optimal matrix completion. IEEE Trans. Inform. Theory 56 2053-2080. · Zbl 1366.15021 · doi:10.1109/TIT.2010.2044061
[20] Donoho, D. L. (2006). Compressed sensing. IEEE Trans. Inform. Theory 52 1289-1306. · Zbl 1288.94016 · doi:10.1109/TIT.2006.871582
[21] Donoho, D. L. and Johnstone, I. M. (1994). Minimax risk over \(l_{p}\)-balls for \(l_{q}\)-error. Probab. Theory Related Fields 99 277-303. · Zbl 0802.62006 · doi:10.1007/BF01199026
[22] Flammia, S. T., Gross, D., Liu, Y. K. and Eisert, J. (2012). Quantum tomography via compressed sensing: Error bounds, sample complexity and efficient estimators. New J. Phys. 14 095022.
[23] Gross, D. (2011). Recovering low-rank matrices from few coefficients in any basis. IEEE Trans. Inform. Theory 57 1548-1566. · Zbl 1366.94103 · doi:10.1109/TIT.2011.2104999
[24] Gross, D., Liu, Y.-K., Flammia, S. T., Becker, S. and Eisert, J. (2010). Quantum state tomography via compressed sensing. Phys. Rev. Lett. 105 150401.
[25] Guţă, M. and Artiles, L. (2007). Minimax estimation of the Wigner function in quantum homodyne tomography with ideal detectors. Math. Methods Statist. 16 1-15. · Zbl 1283.62084 · doi:10.3103/S1066530707010012
[26] Häffner, H., Hänsel, W., Roos, C. F., Benhelm, J., Chek-al-Kar, D., Chwalla, M., Körber, T., Rapol, U. D., Riebe, M., Schmidt, P. O., Becher, C., Gühne, O., Dür, W. and Blatt, R. (2005). Scalable multiparticle entanglement of trapped ions. Nature 438 643-646.
[27] Holevo, A. S. (1982). Probabilistic and Statistical Aspects of Quantum Theory. North-Holland Series in Statistics and Probability 1 . North-Holland, Amsterdam. · Zbl 0497.46053
[28] Johnson, M. W., Amin, M. H. S., Gildert, S., Lanting, T., Hamze, F., Dickson, N., Harris, R., Berkley, A. J., Johansson, J., Bunyk, P., Chapple, E. M., Enderud, C., Hilton, J. P., Karimi, K., Ladizinsky, E., Ladizinsky, N., Oh, T., Perminov, I., Rich1, C., Thom, M. C., Tolkacheva, E., Truncik, C. J. S., Uchaikin, S., Wang, J., Wilson, B. and Rose, G. (2011). Quantum annealing with manufactured spins. Nature 473 194-198.
[29] Jones, N. (2013). Computing: The quantum company. Nature 498 286-288.
[30] Keshavan, R. H., Montanari, A. and Oh, S. (2010). Matrix completion from noisy entries. J. Mach. Learn. Res. 11 2057-2078. · Zbl 1242.62069
[31] Klopp, O. (2011). Rank penalized estimators for high-dimensional matrices. Electron. J. Stat. 5 1161-1183. · Zbl 1274.62489 · doi:10.1214/11-EJS637
[32] Klopp, O. (2012). Noisy low-rank matrix completion with general sampling distribution. Manuscript. · Zbl 1400.62115
[33] Koltchinskii, V. (2011). Von Neumann entropy penalization and low-rank matrix estimation. Ann. Statist. 39 2936-2973. · Zbl 1246.62138 · doi:10.1214/11-AOS926
[34] Koltchinskii, V., Lounici, K. and Tsybakov, A. B. (2011). Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion. Ann. Statist. 39 2302-2329. · Zbl 1231.62097 · doi:10.1214/11-AOS894
[35] Lanyon, B. P., Whitfield, J. D., Gillett, G. G., Goggin, M. E., Almeida, M. P., Kassal, I., Biamonte, J. D., Mohseni, M., Powell, B. J., Barbieri, M., Aspuru-Guzik, A. and White, A. G. (2010). Towards quantum chemistry on a quantum computer. Nat. Chem. 2 106-111.
[36] Le Cam, L. (1973). Convergence of estimates under dimensionality restrictions. Ann. Statist. 1 38-53. · Zbl 0255.62006 · doi:10.1214/aos/1193342380
[37] Liu, Y. K. (2011). Universal low-rank matrix recovery from Pauli measurements. Unpublished manuscript.
[38] Negahban, S. and Wainwright, M. J. (2011). Estimation of (near) low-rank matrices with noise and high-dimensional scaling. Ann. Statist. 39 1069-1097. · Zbl 1216.62090 · doi:10.1214/10-AOS850
[39] Nielsen, M. A. and Chuang, I. L. (2000). Quantum Computation and Quantum Information . Cambridge Univ. Press, Cambridge. · Zbl 1049.81015
[40] Recht, B. (2011). A simpler approach to matrix completion. J. Mach. Learn. Res. 12 3413-3430. · Zbl 1280.68141
[41] Recht, B., Fazel, M. and Parrilo, P. A. (2010). Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52 471-501. · Zbl 1198.90321 · doi:10.1137/070697835
[42] Rohde, A. and Tsybakov, A. B. (2011). Estimation of high-dimensional low-rank matrices. Ann. Statist. 39 887-930. · Zbl 1215.62056 · doi:10.1214/10-AOS860
[43] Sakurai, J. J. and Napolitano, J. (2010). Modern Quantum Mechanics , 2nd ed. Addison-Wesley, Reading, MA. · Zbl 1392.81003
[44] Senko, C., Smith, J., Richerme, P., Lee, A., Campbell, W. C. and Monroe, C. (2014). Coherent imaging spectroscopy of a quantum many-body spin system. Science 345 430-433. · Zbl 1355.81191 · doi:10.1126/science.1251422
[45] Shankar, R. (1994). Principles of Quantum Mechanics , 2nd ed. Plenum Press, New York. · Zbl 0893.00007
[46] Tao, M., Wang, Y. and Zhou, H. H. (2013). Optimal sparse volatility matrix estimation for high-dimensional Itô processes with measurement errors. Ann. Statist. 41 1816-1864. · Zbl 1281.62178 · doi:10.1214/13-AOS1128
[47] Wang, Y. (2011). Quantum Monte Carlo simulation. Ann. Appl. Stat. 5 669-683. · Zbl 1223.62174 · doi:10.1214/10-AOAS406
[48] Wang, Y. (2012). Quantum computation and quantum information. Statist. Sci. 27 373-394. · Zbl 1331.81080 · doi:10.1214/11-STS378
[49] Wang, Y. (2013). Asymptotic equivalence of quantum state tomography and noisy matrix completion. Ann. Statist. 41 2462-2504. · Zbl 1294.62006 · doi:10.1214/13-AOS1156
[50] Wang, Y. and Xu, C. (2015). Density matrix estimation in quantum homodyne tomography. Statist. Sinica 25 953-973. · Zbl 1415.81016
[51] Yu, B. (1997). Assouad, Fano, and Le Cam. In Festschrift for Lucien Le Cam 423-435. Springer, New York. · Zbl 0896.62032 · doi:10.1007/978-1-4612-1880-7_29
[52] Zhang, C. (2012). Minimax \(\ell_{q}\) risk in \(\ell_{p}\) balls. Inst. Math. Stat. Collect. 8 78-89. · Zbl 1326.62156 · doi:10.1214/11-IMSCOLL806
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.