×

On conformal qc geometry, spherical qc manifolds and convex cocompact subgroups of \(\mathrm{Sp}{(n+1,1)}\). (English) Zbl 1341.53077

In this paper the authors study the conformal geometry of spherical qc manifolds.
Recall that a spherical qc manifold is a locally conformally flat pseudo-Riemannian manifold admitting an atlas whose local charts are open subsets of the quaternionic Heisenberg group and whose transition functions take their values in the group \(\mathrm{Sp}(n+1,1)\). In this way they are the quaternionic counterparts of locally conformally flat Lorentzian manifolds (locally modelled on the Minkowski space with transition functions in \(\mathrm{SO}(n+1,1)\)) and spherical CR manifolds (locally modelled on the complex Heisenberg group with transition functions in \(\mathrm{SU}(n+1,1)\)).
The main results of the paper are as follows. The authors work out two constructions to obtain an abundance of spherical qc manifolds. The first one is based on connected sums (Section 2) and the second one is based on quotients of the standard spherical qc manifold by co-compact subgroups of \(\mathrm{Sp}(n+1,1)\) (Section 5). Then they investigate the conformal geometry of spherical qc manifolds (Sections 3 and 4) by introducing an appropriate Yamabe operator and its Green function. It is proved that for a connected compact spherical qc manifold exactly one of the three possibilities holds: it admits a conformally equivalent metric with everywhere positive, zero or negative scalar curvature. They accordingly call a spherical qc manifold scalar positive, zero or negative. It is proved that in the compact, scalar positive case, the Green function always exists and its regular part gives rise to a conformally invariant tensor (Theorem 4.1). A positive mass conjecture in this setting is formulated and it is proved that if it holds then this conformally invariant tensor itself gives rise to a spherical qc metric (Corollary 4.1). Finally in Section 6, they integrate the Green function against the so-called Patterson-Sullivan measure in order to construct a spherical qc metric of Nayatani-type (Theorem 6.1).

MSC:

53C26 Hyper-Kähler and quaternionic Kähler geometry, “special” geometry
53C20 Global Riemannian geometry, including pinching
35J08 Green’s functions for elliptic equations

References:

[1] Alt, J.: Weyl connections and the local sphere theorem for quaternionic contact structures. Ann. Global Anal. Geom. 39, 165-186 (2011) · Zbl 1236.53044 · doi:10.1007/s10455-010-9228-y
[2] Apanasov, B., Kim, I.: Cartan angular invariant and deformations of rank \[11\] symmetric spaces. Sb. Math. 198(2), 147-169 (2007) · Zbl 1146.22013 · doi:10.1070/SM2007v198n02ABEH003832
[3] Biquard, O.: Métriques d’Einstein asymptotiquement symétriques. Astérisque 265, vi+109 (2000) · Zbl 0967.53030
[4] Cheng, J., Chiu, H., Yang, P.: Uniformization of spherical CR manifolds. Adv. Math. 255, 182-216 (2014) · Zbl 1288.32051 · doi:10.1016/j.aim.2014.01.002
[5] Conti, D., Fernández, M., Santisteban, J., José, A.: On seven-dimensional quaternionic contact solvable Lie groups. Forum Math. 26, 547-576 (2014) · Zbl 1306.53034 · doi:10.1515/forum-2011-0128
[6] Corlette, K.: Hausdorff dimension of limit sets I. Invent. Math. 102, 521-541 (1990) · Zbl 0744.53030 · doi:10.1007/BF01233439
[7] Duchemin, D.: Quaternionic contact structures in dimension 7. Ann. Inst. Fourier. Grenoble 56, 851-885 (2006) · Zbl 1122.53025 · doi:10.5802/aif.2203
[8] de Andrés, L., Fernández, M., Ivanov, S., Santisteban, J., Ugarte, L., Vassilev, D.: Quaternionic \[K\ddot{a}\] a¨hler and \[Spin(7)\] Spin(7) metrics arising from quaternionic contact Einstein structures. Ann. Mat. Pura Appl. 193, 261-290 (2014) · Zbl 1290.53054 · doi:10.1007/s10231-012-0276-8
[9] Eberlein, P.O.: Visibility Manifold. Pac. J. Math. 46, 45-109 (1973) · Zbl 0264.53026 · doi:10.2140/pjm.1973.46.45
[10] Epstein, C., Melrose, R., Mendoza, G.: Resolvent of the Laplacian on strictly pseudoconvex domains. Acta. Math. 167, 1-106 (1991) · Zbl 0758.32010 · doi:10.1007/BF02392446
[11] Habermann, L., Jost, J.: Green functions and conformal geometry. J. Differ. Geom. 53, 405-442 (1999) · Zbl 1071.53023
[12] Habermann, L.: Riemannian Metrics of Constant Mass and Moduli Spaces of Conformal Structures. Lecture Notes in Mathematics, vol. 1743. Springer, Berlin (2000) · Zbl 0964.58008
[13] Ivanov, S., Vassilev, D.: Conformal quaternionic contact curvature and the local sphere theorem. J. Math. Pures Appl. 93, 277-307 (2010) · Zbl 1194.53044 · doi:10.1016/j.matpur.2009.11.002
[14] Ivanov, S., Vassilev, D.: Quaternionic contact manifolds with a closed fundamental 4-form. Bull. London Math. Soc. 42, 1021-1030 (2010) · Zbl 1221.53080 · doi:10.1112/blms/bdq061
[15] Ivanov, S., Vassilev, D.: Extremals for the Sobolev Inequality and the quacternionic contact Yamabe Problem. London, World Scientific, New Jersey (2011) · Zbl 1228.53001 · doi:10.1142/7647
[16] Ivanov, S. Minchev. I. and Vassilev, D., Quaternionic Contact Einstein Structures and the Quaternionic Contact Yamabe Problem, vol. 231, no. 1086, pp. vi+82. Memoirs of the American Mathematical Society (2014) · Zbl 1307.53039
[17] Ivanov, S., Vassilev, D.: The Lichnerrowicz and Obata first eigenvalue theorems and the Obata uniqueness result in the Yamabe problem on CR and quaternionic contact manifolds. Nonlinear Analysis. 126, 262-323 (2015) · Zbl 1325.53041 · doi:10.1016/j.na.2015.06.024
[18] Ivanov, S. Minchev. I. and Vassilev. D.: Solution of the qc Yamabe equation on a 3-Sasakin manifold and the quaternionic Heisenberg group, arXiv:1504.03142v1 · Zbl 1527.53033
[19] Izeki, H.: Limits sets of Kleinian groups and conformally flat Riemannian manifolds. Invent. Math. 122, 603-625 (1995) · Zbl 0854.53035 · doi:10.1007/BF01231457
[20] Izeki, H.: The Teichm \[\ddot{u}\] u¨ller distance on the space of flat conformal structures. Conform Geom Dyn. 2, 1-24 (1998) · Zbl 0892.58010 · doi:10.1090/S1088-4173-98-00009-5
[21] Kaplan, A.: Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms. Trans. Amer. Math. soc. 258, 147-153 (1980) · Zbl 0393.35015 · doi:10.1090/S0002-9947-1980-0554324-X
[22] Kobayashi, O.: Scalar curvature of a metric with unit volume. Math. Ann. 279, 253-265 (1987) · Zbl 0611.53037 · doi:10.1007/BF01461722
[23] Leutwiler, H.: A riemannian metric invariant under Möbius transformations in \[\mathbb{R}^\text{ n }Rn. In\]: Complex Analysis Joensuu 1987. Lecture Notes in Mathematics, vol. 1351, pp. 223-235. Springer, Berlin (1988) · Zbl 1288.32051
[24] Li, Z.: Uniformization of spherical CR manifolds and the CR Yamabe problem, Proc. Symp. Pure Math.54, Part 1 (1993), 299-305 · Zbl 0795.53067
[25] Nayatani, S.: Patterson-Sullivan measure and conformally flat metrics. Math. Z. 225, 115-131 (1997) · Zbl 0868.53024 · doi:10.1007/PL00004301
[26] Nayatani, S.: Discrete groups of complex hyperbolic isometries and pseudo-Hermitian structures. In: Analysis and Geometry in Several Complex Variables, pp. 209-237. Birkhäuser, Boston (1997) · Zbl 0940.32015
[27] Orsted, B.: Conformally invariant differential equations and projective geometry. J. Funct. Anal. 44, 1-23 (1981) · Zbl 0507.58048 · doi:10.1016/0022-1236(81)90002-1
[28] Patterson, S.J.: The limit set of a Fuchsian group. Acta. Math. 136, 241-273 (1976) · Zbl 0336.30005 · doi:10.1007/BF02392046
[29] Salamon, S.: Riemannian Geometry and Holonomy Groups. Pitman Research Notes in Mathematics 201. Longman, Harlow (1989) · Zbl 0685.53001
[30] Schoen, R., Yau, S.: Conformally flat manifolds, Kleinian groups and scalar curvature. Invent. Math. 92, 47-71 (1988) · Zbl 0658.53038 · doi:10.1007/BF01393992
[31] Wang, W.: Canonical contact forms on spherical CR manifolds. J. Eur. Math. soc. 5, 245-273 (2003) · Zbl 1048.53018 · doi:10.1007/s10097-003-0050-8
[32] Wang, W.: Representations of \[{\rm SU}(p, q)\] SU(p,q) and CR geometry I. J. Math. Kyoto Univ. 45, 759-780 (2005) · Zbl 1097.43003
[33] Wang, W.: The Teichmüller distance on the space of spherical CR structures. Sci. China Ser. A. 49, 1523-1538 (2006) · Zbl 1109.32031 · doi:10.1007/s11425-006-2052-y
[34] Wang, W.: The Yamabe problem on quaternionic contact manifolds. Ann. Mat. Pura Appl. 186, 359-380 (2007) · Zbl 1150.53007
[35] Wang, W.: On the tangential Cauchy-Fueter operators on nondegenerate quadratic hypersurfaces in \[\mathbb{H}^2\] H2. Math. Nachr. 286, 1353-1376 (2013) · Zbl 1273.30045 · doi:10.1002/mana.201000119
[36] Yue, C.: Mostow rigidity of rank 1 discrete groups with ergodic Bowen-Margulis measure. Invent. Math. 125, 75-102 (1996) · Zbl 0853.58076 · doi:10.1007/s002220050069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.