×

Polytopes of large rank for \(\mathrm{PSL}(4,\mathbb{F}_q)\). (English) Zbl 1341.51040

An on-going line of investigation is to determine which simple (or near simple) groups are automorphism groups of abstract regular polytopes, in the sense of the monograph with that title by the reviewer and E. Schulte [Abstract regular polytopes. Cambridge: Cambridge University Press (2002; Zbl 1039.52011)]. Recall that one can identify an abstract regular polytope of rank \(n\) with its automorphism group \(G\), which is a string C-group of rank \(n\), whose generators \(\rho_0,\ldots,\rho_{n-1}\) are involutions satisfying the intersection property \[ \langle \rho_i \mid i \in J \rangle \cap \langle \rho_i \mid i \in K \rangle = \langle \rho_i \mid i \in J \cap K \rangle \] for \(J,K \subseteq \{0,\ldots,n-1\}\); moreover, \(\rho_j,\rho_k\) commute if \(|j-k| \geq 2\).
In this paper, the authors consider the projective special linear group \(G = \mathrm{PSL}(4,\mathbb{F}_q)\) (with \(q = p^k\) a prime power). They prove two main results. First, \(G\) is a string group of rank \(4\) for every \(k\) if the prime \(p\) is odd. More specifically, the Schläfli type of \(G\) is \([q-1,\tfrac12(q^2 + 1),e]\), where \(e = p\) or \(e\) divides \(q \pm 1\), which means that \(\rho_{j-1}\rho_j\) has period \(q-1\), \(\tfrac12(q^2 + 1)\) or \(e\) as \(j = 1,2,3\). Second, \(G\) is not a string C-group of any rank for any \(k\) if \(p = 2\).

MSC:

51M20 Polyhedra and polytopes; regular figures, division of spaces

Citations:

Zbl 1039.52011

Software:

Magma
Full Text: DOI

References:

[1] Bosma, W.; Cannon, J.; Playoust, C., The Magma algebra system. I. The user language, J. Symbolic Comput., 24, 3-4, 235-265 (1997), MR1484478 · Zbl 0898.68039
[2] Bray, J. N.; Holt, D. F.; Roney-Dougal, C. M., The Maximal Subgroups of the Low-Dimensional Finite Classical Groups, London Math. Soc. Lecture Note Ser., vol. 407 (2013), Cambridge University Press: Cambridge University Press Cambridge, MR3098485 · Zbl 1303.20053
[3] Brooksbank, P. A.; Vicinsky, D. A., Three-dimensional classical groups acting on polytopes, Discrete Comput. Geom., 44, 3, 654-659 (2010), MR2679061 (2011g:52020) · Zbl 1206.52012
[4] Cilleruelo, J., Combinatorial problems in finite fields and Sidon sets, Combinatorica, 32, 5, 497-511 (2012), MR3004806 · Zbl 1291.11025
[5] Conder, M.; Potočink, P.; Širáň, J., Regular hypermaps over projective linear groups, J. Aust. Math. Soc., 85, 2, 155-175 (2008), MR2470535 (2010f:57005) · Zbl 1181.57003
[6] Connor, T.; De Saedeleer, J.; Leemans, D., Almost simple groups with socle \(PSL(2, q)\) acting on abstract regular polytopes, J. Algebra, 423, 550-558 (2015), MR3283730 · Zbl 1304.52017
[7] Connor, T.; Leemans, D.; Mixer, M., Abstract regular polytopes for the O′Nan group, Internat. J. Algebra Comput., 24, 1, 59-68 (2014), MR3189666 · Zbl 1305.52019
[8] Coxeter, H. S.M., Regular Polytopes (1973), Dover Publications: Dover Publications New York, MR0370327 (51 #6554)
[9] Fernandes, M. E.; Leemans, D., Polytopes of high rank for the symmetric groups, Adv. Math., 228, 3207-3222 (2011), MR2844941 (2012j:52025) · Zbl 1252.51011
[10] Fernandes, M. E.; Leemans, D.; Mixer, M., Polytopes of high rank for the alternating groups, J. Combin. Theory Ser. A, 119, 42-56 (2012), MR2844081 (2012h:52026) · Zbl 1235.52021
[11] Hartley, M. I., An atlas of small regular abstract polytopes, Period. Math. Hungar., 53, 1-2, 149-156 (2006), MR2286467 (2007i:51027) · Zbl 1127.51013
[12] Klein, F., Über die Transformation der allgemeinen Gleichung des zweiten Grades zwischen Linien-Koordinaten auf eine kanonische Form (1868), Rheinische Friedrich-Wilhelms-Universität Bonn
[13] Leemans, D.; Schulte, E., Groups of type \(L_2(q)\) acting on polytopes, Adv. Geom., 7, 4, 529-539 (2007), MR2360900 (2008i:20003) · Zbl 1198.52013
[14] Leemans, D.; Schulte, E., Polytopes with groups of type \(PGL_2(q)\), Ars Math. Contemp., 2, 2, 163-171 (2009), MR2550963 (2010k:52014) · Zbl 1195.52003
[15] Leemans, D.; Vauthier, L., An atlas of abstract regular polytopes for small groups, Aequationes Math., 72, 313-320 (2006), MR2282877 (2007i:51028) · Zbl 1114.51009
[16] Mazurov, V. D., Unsolved Problems in Group Theory, The Kourovka Notebook, vol. 10 (1986)
[17] Mazurov, V. D., Generation of sporadic simple groups by three involutions, two of which commute, Sibirsk. Mat. Zh., 44, 1, 193-198 (2003), MR1967616 (2004g:20023) · Zbl 1035.20014
[18] McMullen, P.; Schulte, E., Abstract Regular Polytopes, Encyclopedia Math. Appl., vol. 92 (2002), xiv+551, MR1965665 (2004a:52020) · Zbl 1039.52011
[19] Nuzhin, Ya. N., Generating triples of involutions of Chevalley groups over a finite field of characteristic 2, Algebra Logic, 29, 134-143 (1990), MR1131150 (92j:20046) · Zbl 0725.20015
[20] Nuzhin, Ya. N., Generating triples of involutions for Lie-type groups over a finite field of odd characteristic, II, Algebra Logic, 36, 245-256 (1997), MR1601503 (98m:20021) · Zbl 0966.20007
[21] Taylor, D. E., The Geometry of the Classical Groups, Sigma Ser. Pure Math., vol. 9 (1992), Heldermann Verlag: Heldermann Verlag Berlin, MR1189139 (94d:20028) · Zbl 0767.20001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.