×

Travelling waves in nonlinear magneto-inductive lattices. (English) Zbl 1341.34073

A lattice equation with nonlinearities is considered. This equation models the dynamics of electromagnetic waves in so-called magneto-inductive metamaterials. Existence and uniqueness of travelling periodic solutions of the considered equation are studied. These solutions are due to a periodic forcing. Some results on bifurcation and modulational stability of such solutions are also given. The presented analytical results are in good agreement with direct numerical computations obtained in the last section of the paper.

MSC:

34K13 Periodic solutions to functional-differential equations
34K05 General theory of functional-differential equations
34K18 Bifurcation theory of functional-differential equations

References:

[1] Agaoglou, M.; Rothos, V. M.; Susanto, H.; Veldes, G. P.; Frantzeskakis, D. J., Bifurcation results for travelling waves in nonlinear magnetic metamaterials, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 24, Article 1450147 pp. (2014) · Zbl 1304.34084
[2] Berger, M. S., Nonlinearity and Functional Analysis (1977), Academic Press: Academic Press New York · Zbl 0368.47001
[3] Birkhoff, G.; Mac Lane, S., A Survey of Modern Algebra (2008), A K Peters, Ltd.: A K Peters, Ltd. New York
[4] Chicone, C., Ordinary Differential Equations with Applications, Texts in Applied Mathematics, vol. 34 (2006), Springer: Springer New York · Zbl 1120.34001
[5] (Cui, T. J.; Smith, D.; Liu, R., MetamaterialsTheory, Design, and Applications (2009), Springer: Springer New York)
[6] Diblík, J.; Fečkan, M.; Pospíšil, M.; Rothos, V. M.; Susanto, H., Travelling waves in nonlinear magnetic metamaterials, (Carretero, R.; Cuevas, J.; Frantzeskakis, D.; Karachalios, N.; Kevrekidis, P. G.; Palmero, F., Localized Excitations in Nonlinear Complex Systems, Nonlinear Systems and Complexity (2014), Springer International Publishing: Springer International Publishing Switzerland), 335-358 · Zbl 1327.82096
[7] Enkrich, C.; Wegener, M.; Linden, S.; Burger, S.; Zschiedrich, L.; Schmidt, F.; Zhou, J. F.; Koschny, Th.; Soukoulis, C. M., Magnetic metamaterials at telecommunication and visible frequencies, Phys. Rev. Lett., 95, Article 203901 pp. (2005)
[8] Fečkan, M.; Pospíšil, M.; Rothos, V. M.; Susanto, H., Periodic travelling waves of forced FPU lattices, J. Dynam. Differential Equations, 25, 795-820 (2013) · Zbl 1295.35166
[9] Freire, M. J.; Marqués, R.; Medina, F.; Laso, M. A.G.; Martín, F., Planar magnetoinductive wave transducers: theory and applications, Appl. Phys. Lett., 85, 4439 (2004)
[10] Gallavotti, G., The Fermi-Pasta-Ulam Problem: A Status Report, Lecture Notes in Phys., vol. 728 (2008), Springer: Springer Berlin, Heidelberg · Zbl 1138.81004
[11] Grigorenko, A. N.; Geim, A. K.; Gleeson, H. F.; Zhang, Y.; Firsov, A. A.; Khrushchev, I. Y.; Petrovic, J., Nanofabricated media with negative permeability at visible frequencies, Nature, 438, 335-338 (2005)
[12] Ishikawa, A.; Tanaka, T.; Kawata, S., Negative magnetic permeability in the visible light region, Phys. Rev. Lett., 95, Article 237401 pp. (2005)
[13] Jackson, J. D., Classical Electrodynamics (1999), John Wiley and Sons: John Wiley and Sons New Jersey · Zbl 0920.00012
[14] Katsarakis, N.; Konstantinidis, G.; Kostopoulos, A.; Penciu, R. S.; Gundogdu, T. F.; Kafesaki, M.; Economou, E. N.; Koschny, Th.; Soukoulis, C. M., Magnetic response of split-ring resonators in the far-infrared frequency regime, Optim. Lett., 30, 1348-1350 (2005)
[15] Kourakis, I.; Lazarides, N.; Tsironis, G. P., Self-focusing and envelope pulse generation in nonlinear magnetic metamaterials, Phys. Rev. E, 75, Article 067601 pp. (2007)
[16] Lazarides, N.; Eleftheriou, M.; Tsironis, G. P., Discrete breathers in nonlinear magnetic metamaterials, Phys. Rev. Lett., 97, Article 157406 pp. (2006)
[17] Litchinitser, N. M.; Shalaev, V. M., Optical metamaterials: invisibility in visible and nonlinearities in reverse, (Denz, C.; Flach, S.; Kivshar, Yu. S., Nonlinearities in Periodic Structures and Metamaterials (2010), Springer: Springer New York), 217-240
[18] Longhi, S., Gap solitons in metamaterials, Waves Random Complex Media, 15, 119-126 (2005) · Zbl 1189.78012
[19] Marques, R.; Martin, F.; Sorolla, M., Metamaterials with Negative Parameters. Theory, Design, and Microwave Applications (2008), John Wiley and Sons: John Wiley and Sons New Jersey
[20] Schurig, D.; Mock, J. J.; Justice, B. J.; Cummer, S. A.; Pendry, J. B.; Starr, A. F.; Smith, D. R., Metamaterial electromagnetic cloak at microwave frequencies, Science, 314, 977-980 (2006)
[21] Shamonina, E.; Kalinin, V. A.; Ringhofer, K. H.; Solymar, L., Magnetoinductive waves in one, two, and three dimensions, J. Appl. Phys., 92, 6252 (2002)
[22] Sydoruk, O.; Zhuromskyy, O.; Shamonina, E.; Solymar, L., Phonon-like dispersion curves of magnetoinductive waves, Appl. Phys. Lett., 87, Article 072501 pp. (2005)
[23] Syms, R. R.A.; Shamonina, E.; Solymar, L., Positive and negative refraction of magnetoinductive waves in two dimensions, Eur. Phys. J. B, 46, 301-308 (2005)
[24] Tsitsas, N. L.; Horikis, T. P.; Shen, Y.; Kevrekidis, P. G.; Whitaker, N.; Frantzeskakis, D. J., Short pulse equations and localized structures in frequency band gaps of nonlinear metamaterials, Phys. Lett. A, 374, 1384-1388 (2010) · Zbl 1248.82051
[25] Tsitsas, N. L.; Rompotis, N.; Kourakis, I.; Kevrekidis, P. G.; Frantzeskakis, D. J., Higher-order effects and ultrashort solitons in left-handed metamaterials, Phys. Rev. E, 79, Article 037601 pp. (2009)
[27] Yen, T. J.; Padilla, W. J.; Fang, N.; Vier, D. C.; Smith, D. R.; Pendry, J. B.; Basov, D. N.; Zhang, X., Terahertz magnetic response from artificial materials, Science, 303, 1494-1496 (2004)
[28] Zhou, J.; Koschny, Th.; Kafesaki, M.; Economou, E. N.; Pendry, J. B.; Soukoulis, C. M., Saturation of the magnetic response of split-ring resonators at optical frequencies, Phys. Rev. Lett., 95, Article 223902 pp. (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.