×

Effect of light on the growth of non-nitrogen-fixing and nitrogen-fixing phytoplankton in an aquatic system. (English) Zbl 1341.34055

Summary: We discuss a mathematical model of growth of two types of phytoplankton, non-nitrogen-fixing and nitrogen-fixing, that both require light in order to grow. We use general functional responses to represent the inhibitory effect their biomass has on the exposure to light. We give conditions for the existence and local stability of all of the possible steady-states (die out, single species survival, and coexistence). We derive conditions for global stability of the die out and single-species steady-states and for persistence of both species when the coexistence steady-state exists. Numerical investigation illustrates the qualitative dynamics demonstrating that even under constant environmental conditions, both stable intrinsic oscillatory behavior and a period doubling route to chaotic dynamics are possible. We also show that competitor-mediated coexistence can occur due to the positive feedback resulting from recycling by the nitrogen-fixing phytoplankton. To show the impact of seasonal change in water depth, we also allow the water depth to vary in an annual cycle and discuss echo blooms in this context.

MSC:

34C60 Qualitative investigation and simulation of ordinary differential equation models
34D20 Stability of solutions to ordinary differential equations
34D05 Asymptotic properties of solutions to ordinary differential equations
92D25 Population dynamics (general)
34C23 Bifurcation theory for ordinary differential equations
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34C28 Complex behavior and chaotic systems of ordinary differential equations

Software:

XPPAUT
Full Text: DOI

References:

[1] Agawin NSR, Rabouille S, Veldhuis MJW, Lidewij S, Hol S, van Overzee HMJ, Huisman J (2007) Competition and facilitation between unicellular nitrogen-fixing cyanobacteria and non-nitrogen-fixing phytoplankton species. Limnol Oceanogr 52(5):2233-2248 · doi:10.4319/lo.2007.52.5.2233
[2] Bates NR, Michaels AF, Knap AH (1996) Seasonal and interannual variability of oceanic carbon dioxide species at the US JGOFS Bermuda Atlantic Time-series Study (BATS) site. Deep-Sea Res II 43(2-3):347-383 · doi:10.1016/0967-0645(95)00093-3
[3] Bell PRF, Elmetri I, Uwins P (1999) Nitrogen fixation by Trichodesmium spp. in the Central and Northern Great Barrier Reef Lagoon: relative importance of the fixed-nitrogen load. Mar Ecol Prog Ser 186:119-126 · doi:10.3354/meps186119
[4] Boushaba K, Pascual M (2005) Dynamics of the ’echo’ effect in a phytoplankton system with nitrogen fixation. Bull Math Biol 67:487-507 · Zbl 1334.92444 · doi:10.1016/j.bulm.2004.08.004
[5] Butler GJ, Freedman HI, Waltman P (1986) Uniformly persistent systems. Proc Am Math Soc 96:425-430 · Zbl 0603.34043 · doi:10.1090/S0002-9939-1986-0822433-4
[6] Chapin FS, Matson PA, Vitousek PM (2011) Principles of terrestrial ecosystem ecology. Springer, New York · doi:10.1007/978-1-4419-9504-9
[7] Capone DG, Zehr JP, Paerl HW, Bergman B, Carpenter EJ (1997) Trichodesmium, a globally significant marine cyanobacterium. Science 276:1221-1229 · doi:10.1126/science.276.5316.1221
[8] Carpenter EJ, Romans K (1991) Major role of the cyanobacterium Trichodesmium in nutrient cycling in the North Atlantic Ocean. Science 254:1356-1358 · doi:10.1126/science.254.5036.1356
[9] Coles VJ, Hood RR, Pascual M, Capone DG (2004) Modeling the impact of Trichodesmium and nitrogen fixation in the Atlantic Ocean. J Geophys Res 109:C06007. doi:10.1029/2002JC001754 · doi:10.1029/2002JC001754
[10] Diehl S (2002) Phytoplankton, light, and nutrients in a gradient of mixing depths: theory. Ecology 83:386-398 · doi:10.1890/0012-9658(2002)083[0386:PLANIA]2.0.CO;2
[11] Edwards AM, Brindley J (1997) Oscillatory behavior in a three-component plankton population model. Dyn Stabil Syst 11:347-370 · Zbl 0871.92029 · doi:10.1080/02681119608806231
[12] Ermentrout B (2002) Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students. SIAM, Philadelphia · Zbl 1003.68738 · doi:10.1137/1.9780898718195
[13] Falkowski PG (1997) Evolution of the nitrogen cycle and its influence on the biological sequestration of \[CO_2\] CO2 in the ocean. Nature 387:272-275 · doi:10.1038/387272a0
[14] Freedman HI, Waltman P (1984) Persistence in a model of three interacting predator-prey populations. Math Biosci 68:213-231 · Zbl 0534.92026 · doi:10.1016/0025-5564(84)90032-4
[15] Grover JP (1997) Resource competition. Chapman & Hall, London · doi:10.1007/978-1-4615-6397-6
[16] Gruber N, Sarmiento JL (1997) Global patterns of marine nitrogen fixation and denitrification. Glob Biogeochem Cy 11(2):235-266 · doi:10.1029/97GB00077
[17] Hood R, Bates NR, Capone DG, Olson DB (2001) Modeling the effect of nitrogen fixation on carbon and nitrogen fluxes at BATS. Deep Sea Res 48:1609-1648 · doi:10.1016/S0967-0645(00)00160-0
[18] Huisman J, Weissing FJ (1994) Light-limited growth and competition for light in well-mixed aquatic environments: an elementary model. Ecology 75:507-520 · doi:10.2307/1939554
[19] Huisman J, Weissing FJ (1995) Competition for nutrients and light in a well-mixed aquatic environments: a theoretical analysis. Am Nat 146:536-564 · doi:10.1086/285814
[20] Hutson V, Schmitt K (1992) Permanence and the dynamics of biological systems. Math Biosci 111:1-71 · Zbl 0783.92002 · doi:10.1016/0025-5564(92)90078-B
[21] Karl, D.; Letelier, R.; Hebel, DV; Bird, DF; Winn, CD; Carpenter, E. (ed.); Capone, DG (ed.); Reuter, JG (ed.), Trichodesmium blooms and new nitrogen in the North Pacific gyre, 219-237 (1992), Norwell · doi:10.1007/978-94-015-7977-3_14
[22] Karl D, Letelier R, Tupas L, Dore J, Christian J, Hebel D (1997) The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean. Nature 388:533-538 · doi:10.1038/41474
[23] Kolokolnikov T, Ou CH, Yuan Y (2009) Phytoplankton depth profiles and their transitions near the critical sinking velocity. J Math Biol 59:105-122 · Zbl 1204.92068 · doi:10.1007/s00285-008-0221-z
[24] Kunz TJ, Diehl S (2003) Phytoplankton, light and nutrients along a gradient of mixing depth: a field test of producer-resource theory. Freshw Biol 48:1050-1063 · doi:10.1046/j.1365-2427.2003.01065.x
[25] LaRoche J, Breitbarth E (2005) Importance of the diazotrophs as a source of new nitrogen in the ocean. J Sea Res 53:67-91 · doi:10.1016/j.seares.2004.05.005
[26] Michaels AF, Olson DB, Sarmiento JL, Ammerman J, Fanning K, Jahnke R, Knap AH, Lipschultz R, Prospero J (1996) Inputs, losses and transformations of nitrogen and phosphorus in the pelagic North Atlantic Ocean. Biogeochem 31:181-226 · doi:10.1007/BF02179827
[27] Monteiro F, Follows M (2009) On the interannual variability of nitrogen fixation in the subtropical gyres. J Mar Res 67:71-88 · doi:10.1357/002224009788597944
[28] Olascoaga MJ, Idrisi N, Romanou A (2005) Biophysical isopycnic-coordinate modelling of plankton dynamics in the Arabian Sea. Ocean Model 8:55-80 · doi:10.1016/j.ocemod.2003.12.002
[29] Passarge J, Hol S, Escher M, Huisman J (2006) Competition for nutrients and light: stable coexistence, alternative stable states, or competitive exclusion? Ecol Monograph 76(1):57-72 · doi:10.1890/04-1824
[30] Ruan S (1993) Persistence and coexistence in zooplankton-phytoplankton-nutrient models with instantaneous nutrient recycling. J Math Biol 31:633-654 · Zbl 0779.92021 · doi:10.1007/BF00161202
[31] Ruan S (2001) Oscillations in plankton models with nutrient recycling. J Theor Biol 208:15-26 · Zbl 0911.92028 · doi:10.1006/jtbi.2000.2196
[32] Sambrotto RN, Savidge G, Robinson C, Boyd P, Takahashi T, Karl DM, Langdon C, Chipman D, Marra J, Codispoti L (1993) Elevated consumption of carbon relative to nitrogen in the surface ocean. Nature 363:248-250 · doi:10.1038/363248a0
[33] Sarnelle O (1992) Nutrient enrichment and grazer effects on phytoplankton in lakes. Ecology 73:551-560 · doi:10.2307/1940761
[34] Stomp M, Huisman J, de Jongh F, Veraart AJ, Gerla D, Rijkeboer M, Ibelings BW, Wollenzien UI, Stal LJ (2004) Adaptive divergence in pigment composition promotes phytoplankton biodiversity. Nature 432:104-107 · doi:10.1038/nature03044
[35] Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochem 13:87-115 · doi:10.1007/BF00002772
[36] Watson S, McCauley E, Downing JA (1996) Patterns in phytoplankton taxonomic composition across temperate lakes of differing nutrient status. Limnol Oceanogr 42:487-495 · doi:10.4319/lo.1997.42.3.0487
[37] Yuan Y (2012) A coupled plankton system with instantaneous and delayed predation. J Biol Dyn 6:148-165 · Zbl 1447.92381 · doi:10.1080/17513758.2010.544409
[38] Zhao X-Q (2003) Dynamical systems in population biology. Springer, New York · Zbl 1023.37047 · doi:10.1007/978-0-387-21761-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.