×

On formality of Sasakian manifolds. (English) Zbl 1339.55014

The authors study some algebraic topological properties (cohomology, Massey products, formal minimal model, rational homotopy theory, fundamental group) of Sasakian manifolds. This study starts from problems presented in the book [Sasakian geometry. Oxford: Oxford University Press (2008; Zbl 1155.53002) (Ch.7)] by C. P. Boyer and K. Galicki. The problems are the following:
(1)
Are there obstructions to the existence of Sasakian structures expressed in terms of Massey products?
(2)
There are obstructions to the existence of Sasakian structures in terms of Massey products, which depend on basic cohomology classes of the related \(K\)-contact structure. Can one obtain a topological characterization of them?
(3)
Do there exist simply connected \(K\)-contact non-Sasakian manifolds (open Problem 7.4.1, [op. cit.])?
(4)
Which finitely presented groups can be realized as fundamental groups of compact Sasakian manifolds?
In the present paper answers to these problems are given.
The main results are the following:
{Theorem 3.2.} For every \(n\geq 3\), there exists a simply connected compact regular Sasakian manifold \(M^{2n+1}\), of dimension \(2n+1\), which is non-formal. More precisely, there is a non-trivial 3-sphere bundle over \((S^2)^{2n-1}\) which is a non-formal simply connected compact regular Sasakian manifold.
{Theorem 4.4.} Let \(M\) be a compact Sasakian manifold. Then, all the higher-order Massey products for \(M\) are zero.
{Theorem 4.9}. Let \(M\) be a simply connected compact symplectic manifold of dimension \(2k\) with an integral symplectic form \(\omega\). Assume that the quadruple Massey product in \(H^{\ast}(M)\) is non-zero. There exists a sphere bundle \(S^{2m-1}\rightarrow E\rightarrow M\), for \(m+1>k\), such that the total space \(E\) is \(K\)-contact, but \(E\) does not admit any Sasakian structure.
{Proposition 5.4}. Let \(\Gamma\) be an irreducible arithmetic lattice in a semisimple real Lie group \(\mathcal{G}\) of rank at least 2 with no co-compact factors and with trivial center. If \(\Gamma\) is Sasakian, then it must be isomorphic to the group \(\pi^{orb}_1(M)\) of some Kähler orbifold. Moreover, \(\Gamma\) cannot be a co-compact arithmetic lattice in \(SO(1,n),n>2\), or \(F_{4(20)}\), or a simple real non-Hermitian Lie group of non-compact type with real rank at least 20.
Reviewer: Ioan Pop (Iaşi)

MSC:

55P62 Rational homotopy theory
53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
55S30 Massey products

Citations:

Zbl 1155.53002

References:

[1] L.Auslander, L.Green, F.Hahn, Flows on homogeneous spaces, Annals of Mathematics Studies 53 (Princeton University Press, Princeton, NJ, 1963). · Zbl 0106.36802
[2] I.Babenko, I.Taimanov, ‘Massey products in symplectic manifolds’, Sb. Math., 191 (2000) 1107-1146. · Zbl 1003.53059
[3] F.Belgun, A.Moroianu, U.Semmelmann, ‘Symmetries of contact metric manifolds’, Geom. Dedicata, 101 (2003) 203-216. · Zbl 1049.53032
[4] W. M.Boothby, H. C.Wang, ‘On contact manifolds’, Ann. of Math., 68 (1958) 721-734. · Zbl 0084.39204
[5] C. P.Boyer, K.Galicki, Sasakian geometry (Oxford University Press, Oxford, 2007).
[6] J.Carlson, L.Hernández, ‘Harmonic maps from compact Kähler manifolds to exceptional hyperbolic spaces’, J. Geom. Anal., 1 (1991) 339-357. · Zbl 0737.58016
[7] G.Cavalcanti, M.Fernández, V.Muñoz, ‘Symplectic resolutions, Lefschetz property and formality’, Adv. Math., 218 (2008) 576-599. · Zbl 1142.53070
[8] X.Chen, ‘On the fundamental groups of compact Sasakian manifolds’, Math. Res. Lett., 20 (2013) 27-39. · Zbl 1285.53035
[9] L. A.Cordero, M.Fernández, M.de León, ‘Examples of compact almost contact manifolds admitting Sasakian and no cosymplectic structures’, Atti Sem. Mat. Fis. Univ. Modena, 34 (1985) 43-54. · Zbl 0616.53032
[10] P.Deligne, P.Griffiths, J.Morgan, D.Sullivan, ‘Real homotopy theory of Kähler manifolds’, Invent. Math., 29 (1975) 245-274. · Zbl 0312.55011
[11] J.Eells, J. H.Sampson, ‘Harmonic mappings of Riemannian manifolds’, Amer. J. Math., 86 (1964) 109-160. · Zbl 0122.40102
[12] A.El Kacimi‐Alaoui, ‘Opérateurs transversalement elliptiques sur un feuilletage riemannien et applications’, Compos. Math., 73 (1990) 57-106. · Zbl 0697.57014
[13] Y.Félix, S.Halperin, J.‐C.Thomas, Rational homotopy theory (Springer, Berlin, 2002).
[14] Y.Félix, J.Oprea, D.Tanré, Algebraic models in geometry, Oxford Graduate Texts in Mathematics 17 (Oxford University Press, Oxford, 2008). · Zbl 1149.53002
[15] M.Fernández, V.Muñoz, ‘Formality of Donaldson submanifolds’, Math. Z., 250 (2005) 149-175. · Zbl 1071.57024
[16] M.Fernández, V.Muñoz, ‘An 8‐dimensional non‐formal simply connected symplectic manifold’, Ann. of Math., 167 (2008) 1045-1054. · Zbl 1173.57012
[17] R. E.Gompf, ‘A new construction of symplectic manifolds’, Ann. of Math., 142 (1995) 537-696.
[18] P.Griffiths, J. W.Morgan, Rational homotopy theory and differential forms, Progress in Mathematics 16 (Birkhäuser, Boston, 1981). · Zbl 0474.55001
[19] B.Hajduk, A.Tralle, ‘On simply connected compact \(K\)‐contact non‐Sasakian manifolds’, J. Fixed Point Theory Appl., 16 (2014) 229-241. · Zbl 1320.53097
[20] S.Halperin, ‘Lectures on minimal models’, Mém. Soc. Math. Fr., 9-10 (1983) 1-261. · Zbl 0536.55003
[21] K.Hasegawa, ‘A note on compact solvmanifolds with Kähler structures’, Osaka J. Math., 43 (2006) 131-135. · Zbl 1105.32017
[22] A.Hattori, ‘Spectral sequences in the de Rham cohomology of fibre bundles’, J. Fac. Sci. Univ. Tokyo Sect. I, 8 (1960) 289-331. · Zbl 0099.18003
[23] S.Kobayashi, ‘Principal fibre bundles with the 1‐dimensional toroidal group’, Tôhoku Math. J., 8 (1956) 29-45. · Zbl 0075.32103
[24] J.Kollár, ‘Shafarevich maps and plurigenera of algebraic varieties’, Invent. Math., 113 (1993) 177-215. · Zbl 0819.14006
[25] E.Lerman, ‘How fat is a fat bundle?’, Lett. Math. Phys., 15 (1988) 335-339. · Zbl 0646.53027
[26] E.Lerman, ‘Contact fiber bundles’, J. Geom. Phys., 49 (2004) 52-66. · Zbl 1074.53065
[27] G.Margulis, ‘Finiteness of quotient groups of discrete groups’, Funct. Anal. Appl., 13 (1979) 28-39. · Zbl 0423.22015
[28] J.Neisendorfer, T. J.Miller, ‘Formal and coformal spaces’, Illinois J. Math., 22 (1978) 565-580. · Zbl 0396.55011
[29] L.Ornea, M.Verbitsky, ‘Sasakian structures on \(C R\)‐manifolds’, Geom. Dedicata, 125 (2007) 159-173. · Zbl 1125.53056
[30] R.Petit, ‘Harmonic maps and strictly pseudoconvex CR manifolds’, Comm. Anal. Geom., 10 (2002) 575-610. · Zbl 1038.58016
[31] A.Roig, M.Saralegi, ‘Minimal models for non‐free circle actions’, Illinois J. Math., 44 (2000) 784-820. · Zbl 0977.57040
[32] S.Sasaki, Y.Hatakeyama, ‘On differentiable manifolds with certain structures which are closely related to almost contact structure II’, Tôhoku Math. J., 13 (1961) 281-294. · Zbl 0112.14002
[33] S.Sternberg, ‘Minimal coupling and the symplectic mechanics of a classical particle in the presence of a Yang-Mills field’, Proc. Natl Acad. Sci. USA, 74 (1977) 5253-5254. · Zbl 0765.58010
[34] A. M.Tievsky, ‘Analogues of Kähler geometry on Sasakian manifolds’, PhD Thesis, MIT, 2008.
[35] A.Tralle, J.Oprea, Symplectic manifolds with no Kähler structure, Lecture Notes in Mathematics 1661 (Springer, Berlin, 1997). · Zbl 0891.53001
[36] A.Weinstein, ‘Fat bundles and symplectic manifolds’, Adv. Math., 37 (1980) 239-250. · Zbl 0449.53035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.