×

Geodesics on shape spaces with bounded variation and Sobolev metrics. (English) Zbl 1339.49037

Summary: This paper studies the space of \(BV^2\) planar curves endowed with the \(BV^2\) Finsler metric over its tangent space of displacement vector fields. Such a space is of interest for applications in image processing and computer vision because it enables piecewise regular curves that undergo piecewise regular deformations, such as articulations. The main contribution of this paper is the proof of the existence of the shortest path between any two \(BV^2\)-curves for this Finsler metric. Such a result is proved by applying the direct method of calculus of variations to minimize the geodesic energy. This method is applied more generally to similar cases such as the space of curves with \(H^k\) metrics for \(k\geq 2\) integer. This space has a strong Riemannian structure and is geodesically complete. Thus, our result shows that the exponential map is surjective, which is complementary to geodesic completeness in infinite dimensions. We propose a finite element discretization of the minimal geodesic problem, and use a gradient descent method to compute a stationary point of the energy. Numerical illustrations show the qualitative difference between \(BV^2\) and \(H^2\) geodesics.

MSC:

49Q10 Optimization of shapes other than minimal surfaces
49J45 Methods involving semicontinuity and convergence; relaxation
49M25 Discrete approximations in optimal control
68U05 Computer graphics; computational geometry (digital and algorithmic aspects)

References:

[1] L. Ambrosio, N. Fusco, and D. Pallara, {\it Functions of Bounded Variation and Free Discontinuity Problems}, Oxford Science Publications, Oxford, 2000. · Zbl 0957.49001
[2] V. Arsigny, O. Commowick, X. Pennec, and N. Ayache, {\it A log-Euclidean framework for statistics on diffeomorphisms}, in Medical Image Computing and Computer-Assisted Intervention, R. Larsen, M. Nielsen, and J. Sporring, eds., Lecture Notes in Comput. Sci. 4190, Springer-Verlag, Berlin, 2006, pp. 924-931.
[3] V. Arsigny, P. Fillard, X. Pennec, and N. Ayache, {\it Geometric means in a novel vector space structure on symmetric positive-definite matrices}, SIAM J. Matrix Anal. Appl., 29 (2007), pp. 328-347. · Zbl 1144.47015
[4] C. J. Atkin, {\it The Hopf-Rinow theorem is false in infinite dimensions}, Bull. London Math. Soc., 7 (1975), pp. 261-266. · Zbl 0374.58006
[5] D. Azagra and J. Ferrera, {\it Proximal calculus on Riemannian manifolds}, Mediterr. J. Math., 2 (2005), pp. 437-450. · Zbl 1167.49307
[6] D. Bao, S. S. Chern, and Z. Shen, {\it An Introduction to Riemaniann-Finsler Geometry}, Springer-Verlag, New York, 2000. · Zbl 0954.53001
[7] M. Bauer, M. Bruveris, and P. W. Michor, {\it Overview of the geometries of shape spaces and diffeomorphism groups}, J. Math. Imaging Vision, (2014), pp. 60-97. · Zbl 1310.58005
[8] M. Bauer, P. Harms, and P. W. Michor, {\it Sobolev metrics on shape space, II: Weighted Sobolev metrics and almost local metrics}, J. Geom. Mech., 4 (2012), pp. 365-383. · Zbl 1281.58003
[9] M. Bauer, P. Harms, and P. W. Michor, {\it Sobolev metrics on the manifold of all Riemannian metrics}, J. Differential Geom., 94 (2013), pp. 187-208. · Zbl 1275.58007
[10] M. Bergounioux, {\it Mathematical analysis of a INF-convolution model for image processing}, J. Optim. Theory Appl., 168 (2016), pp. 1-21. · Zbl 1332.65030
[11] S. Bochner and R. E. Taylor, {\it Linear functionals on certain spaces of abstractly-valued functions}, Ann. of Math. (2), 39 (1938), pp. 913-944. · Zbl 0020.37101
[12] M. Bruveris, P. W. Michor, and D. Mumford, {\it Geodesic completeness for Sobolev metrics on the space of immersed plane curves}, Forum Math. Sigma, 2 (2014), e19. · Zbl 1315.58009
[13] B. Cengiz, {\it The dual of the Bochner space \({L}^p(μ,e)\) for arbitrary \(μ\)}, Turkish J. Math., 22 (1998), pp. 343-348. · Zbl 0930.46034
[14] G. Charpiat, R. Keriven, J. P. Pons, and O. D. Faugeras, {\it Designing spatially coherent minimizing flows for variational problems based on active contours}, in Tenth IEEE International Conference on Computer Vision, IEEE Computer Society, Los Alamitos, CA, 2005, pp. 1403-1408.
[15] G. Charpiat, G. Peyré, G.Nardi, and F.-X. Vialard, {\it Finsler steepest descent with applications to piecewise-regular curve evolution,} Interfaces Free Bound., to appear. · Zbl 1344.49046
[16] S. D. Chatterji, {\it Martingales of Banach valued random variables}, Bull. Amer. Math. Soc., 66 (1960), pp. 395-398. · Zbl 0102.13601
[17] F. H. Clarke, {\it On the inverse function theorem}, Pacific J. Math., 64 (1976), pp. 97-102. · Zbl 0331.26013
[18] T. de Pauw, {\it On SBV dual}, Indiana Univ. Math. J., 47 (1998), pp. 99-121. · Zbl 0915.49003
[19] R. Durrett, {\it Probability: Theory and Examples}, Cambridge University Press, Cambridge, 2010. · Zbl 1202.60001
[20] I. Ekeland, {\it The Hopf-Rinow theorem in infinite dimension}, J. Differential Geom., 13 (1978), pp. 287-301. · Zbl 0393.58004
[21] L. Evans and R. F. Garipey, {\it Measure Theory and Fine Properties of Functions}, CRC Press, Boca Raton, FL, 1992. · Zbl 0804.28001
[22] É. Ghys, {\it Groups acting on the circle}, Enseign. Math. (2), 47 (2001), pp. 329-407. · Zbl 1044.37033
[23] N. Grossman, {\it Hilbert manifolds without epiconjugate points}, Proc. Amer. Math. Soc., 16 (1965), pp. 1365-1371. · Zbl 0135.40204
[24] H. Inci, T. Kappeler, and P. Topalov, {\it On the Regularity of the Composition of Diffeomorphisms}, Mem. Amer. Math. Soc. 1062, 2013. · Zbl 1293.58004
[25] K. Bredies, K. Kunisch, and T. Pock, {\it Total generalized variation}, SIAM J. Imaging Sci., 3 (2010), pp. 492-526. · Zbl 1195.49025
[26] M. Kilian, N. J. Mitra, , and H. Pottmann, {\it Geometric modeling in shape space}, ACM Trans. Graph., 26 (2007), 64.
[27] S. Masnou and G. Nardi, {\it A coarea-type formula for the relaxation of a generalized elastica functional}, J. Convex Anal., 20 (2013), pp. 617-653. · Zbl 1278.49015
[28] A. C. Mennucci, {\it Level Set and PDE-based Reconstruction Methods in Imaging}, Lecture Notes in Math. 2090, Springer-Verlag, Cham, Switzerland, 2013.
[29] P. W. Michor and D. Mumford, {\it Riemannian geometries on spaces of plane curves}, J. Eur. Math. Soc. (JEMS), 8 (2006), pp. 1-48. · Zbl 1101.58005
[30] P. W. Michor and D. Mumford, {\it An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach}, Appl. Comput. Harmon. Anal., 27 (2007), pp. 74-113. · Zbl 1116.58007
[31] P. W. Michor and D. Mumford, {\it A zoo of diffeomorphism groups on \(\Bbb{R}^n\)}, Ann. Global Anal. Geom., 44 (2013), pp. 529-540. · Zbl 1364.22009
[32] J. Milnor, {\it Morse Theory}, Ann. Math. Stud. 51, Princeton University Press, Princeton, NJ, 1963. · Zbl 0108.10401
[33] B. S. Mordukhovich, {\it Variational Analysis and Generalized Differentiation II, Applications}, Springer, Berlin, 2013.
[34] N. G. Meyers and W. P. Ziemer, {\it Integral inequalities of Poincaré and Wirtinger type for BV functions}, Ann. J. Math., 99 (1977), pp. 1345-1360. · Zbl 0416.46025
[35] M. Niethammer, Y. Huang, and F-X. Vialard, {\it Geodesic regression for image time-series}, in Medical Image Computing and Computer-Assisted Intervention, Gabor Fichtinger, A. L. Martel, and T. M. Peters, eds., Lecture Notes in Comput. Sci. 6892, Springer, Berlin, 2011, pp. 655-662.
[36] L. Risser, F.-X. Vialard, R. Wolz, M. Murgasova, D. Holm, and D. Rueckert, {\it Simultaneous multiscale registration using large deformation diffeomorphic metric mapping}, IEEE Trans. Med. Imaging, 30 (2011), pp. 1746-1759.
[37] G. Sundaramoorthi, J. D. Jackson, A. J. Yezzi, and A. C. Mennucci, {\it Tracking with Sobolev active contours}, in 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE Computer Society, Los Alamitos, CA, 2006, pp. 674-680.
[38] G. Sundaramoorthi, A. Mennucci, S. Soatto, and A. Yezzi, {\it A new geometric metric in the space of curves, and applications to tracking deforming objects by prediction and filtering}, SIAM J. Imaging Sci., 4 (2011), pp. 109-145. · Zbl 1214.93033
[39] G. Sundaramoorthi, A. J. Yezzi, and A. C. Mennucci, {\it Sobolev active contours}, Int. J. Comput. Vis., 73 (2007), pp. 345-366. · Zbl 1159.68606
[40] G. Sundaramoorthi, A. J. Yezzi, and A. C. Mennucci, {\it Properties of Sobolev-type metrics in the space of curves}, Interfaces Free Bound., 10 (2008), pp. 423-445. · Zbl 1168.58005
[41] G. Sundaramoorthi, A. J. Yezzi, A. C. Mennucci, and G. Sapiro, {\it New possibilities with Sobolev active contours}, Int. J. Comput. Vis., 84 (2009), pp. 113-129. · Zbl 1477.68428
[42] A. Trouvé and F-X. Vialard, {\it Shape splines and stochastic shape evolutions: A second order point of view}, Quart. Appl. Math., 70 (2012), pp. 219-251. · Zbl 1259.65104
[43] A. Iounesco Tulcea and C. Iounesco Tulcea, {\it Topics in the Theory of Lifting}, Springer, Berlin, 1969. · Zbl 0179.46303
[44] M. Vaillant and J. Glaunès, {\it Surface matching via currents}, in Information Processing in Medical Imaging, Lecture Notes in Comput. Sci. 3565, 2005, pp. 381-392.
[45] M. Vaillant, M. I. Miller, L. Younes, and A. Trouvé, {\it Statistics on diffeomorphisms via tangent space representations}, NeuroImage, 23 (2004), pp. S161-S169.
[46] B. Wirth, L. Bar, M. Rumpf, and G. Sapiro, {\it Geodesics in shape space via variational time discretization}, in Proceedings of the 7th International Conference on Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR’09), Lecture Notes in Comput. Sci. 5681, Springer, Berlin, 2009, pp. 288-302.
[47] X. Pennec, {\it Probabilities and statistics on Riemannian manifolds: Basic tools for geometric measurements}, Proceedings of the IEEE-Eurasip Workshop on Nonlinear Signal and Image Processing, Bogazici University, Istanbul, 1999, pp. 194-198.
[48] A. Yezzi and A. Mennucci, {\it Conformal metrics and true “gradient flows” for curves}, in Tenth IEEE International Conference on Computer Vision, IEEE Computer Society, Vol. 1, Los Alamitos, CA, 2005, pp. 913-919.
[49] A. Yezzi and A. Mennucci, {\it Metrics in the Space of Curves}, preprint, arXiv:Math/0412454v2, 2005.
[50] L. Younes, {\it Computable elastic distances between shapes}, SIAM J. Appl. Math., 58 (1998), pp. 565-586. · Zbl 0907.68158
[51] L. Younes, {\it Shapes and Diffeomorphisms}, Appl. Math. Sci. 171, Springer, (2010). · Zbl 1205.68355
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.