×

Nonlinear maps preserving Jordan \(\ast\)-products. (English) Zbl 1339.47047

Let \(\eta\) be a nonzero complex number. The paper studies a bijective map \(\phi\) between von Neumann algebras \(A\) and \(B\) such that \(\phi(ab + \eta ba^*) = \phi(a)\phi(b) + \eta \phi(b)\phi(a)^*\) for all \(a,b\in A\) (linearity is not assumed). The main result states that if at least one of \(A\), \(B\) has no central abelian projections, then \(\phi\) is a linear \(\ast\)-isomorphism if \(\eta\) is not real, and is the sum of a linear \(\ast\)-isomorphism and a conjugate linear \(\ast\)-isomorphism if \(\eta\) is real.

MSC:

47B47 Commutators, derivations, elementary operators, etc.
46L10 General theory of von Neumann algebras
Full Text: DOI

References:

[1] An, R.; Hou, J., A characterization of *-automorphism on \(B(H)\), Acta Math. Sin. (Engl. Ser.), 26, 287-294 (2010) · Zbl 1214.47035
[2] Bai, Z.; Du, S., Maps preserving products \(X Y - Y X^\ast\) on von Neumann algebras, J. Math. Anal. Appl., 386, 103-109 (2012) · Zbl 1232.47032
[3] Bres˘ar, M.; Fos˘ner, M., On ring with involution equipped with some new product, Publ. Math. Debrecen, 57, 121-134 (2000) · Zbl 0969.16013
[4] Cui, J.; Li, C. K., Maps preserving product \(X Y - Y X^\ast\) on factor von Neumann algebras, Linear Algebra Appl., 431, 833-842 (2009) · Zbl 1183.47031
[5] Li, C.; Lu, F.; Fang, X., Mappings preserving new product \(X Y + Y X^\ast\) on factor von Neumann algebras, Linear Algebra Appl., 438, 2339-2345 (2013) · Zbl 1276.47047
[6] Miers, C. R., Lie homomorphisms of operator algebras, Pacific J. Math., 38, 717-735 (1971) · Zbl 0204.14803
[7] Molnár, L., A condition for a subspace of \(B(H)\) to be an ideal, Linear Algebra Appl., 235, 229-234 (1996) · Zbl 0852.46021
[8] S˘emrl, P., On Jordan *-derivations and an application, Colloq. Math., 59, 241-251 (1990) · Zbl 0723.46044
[9] S˘emrl, P., Quadratic functionals and Jordan *-derivations, Studia Math., 97, 157-265 (1991) · Zbl 0761.46047
[10] S˘emrl, P., Quadratic and quasi-quadratic functionals, Proc. Amer. Math. Soc., 119, 1105-1113 (1993) · Zbl 0803.15024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.