×

Moving observer trajectory control by angular measurements in tracking problem. (English. Russian original) Zbl 1338.93160

Autom. Remote Control 77, No. 1, 106-129 (2016); translation from Avtom. Telemekh. 2016, No. 1, 134-162 (2016).
Summary: An optimal path synthesis problem for a moving observer that performs angular observations over a target moving uniformly along a straight line on a plane is solved. It is supposed that elevation and azimuth angles can be observed when the observer moves in space and only the azimuth angle can be observed when the observer moves on a plane. Observer’s trajectories are obtained with the help of Pontryagin’smaximum principle as numerical solutions of an optimal control problem. As a performance criterion the trace of covariance matrix of the target motion elements estimate is used. A possibility of solving the problem in real time on board for unmanned aerial vehicle is investigated. A comparison with the scenario of two unmanned aerial vehicles using is given.

MSC:

93B50 Synthesis problems
93B07 Observability
93C85 Automated systems (robots, etc.) in control theory
49K15 Optimality conditions for problems involving ordinary differential equations
Full Text: DOI

References:

[1] Nardone, S.C. and Aidala, V.J., Optimization of Observer Trajectories for Bearings-Only Target Localization, IEEE Trans. Aerospace Electron. Syst., 1981, vol. AES-17, no. 2, pp. 162-166. · doi:10.1109/TAES.1981.309141
[2] Grigor’ev, F.N., Kuznetsov, N.A., and Serebrovskii, A.P., Upravlenie nablyudeniyami v avtomaticheskikh sistemakh (Controlling Observations in Automated Systems), Moscow: Nauka, 1986.
[3] Koks, D., Numerical Culations for Passive Geolocation Scenarios, in Defense Science and Technology Organization Research Report, DSTO-RR-0319, Australia, 2009, http://www.dsto.defence. gov.au/publications/scientific record.php?record=4559.
[4] Miller, A.; Miller, B., Tracking the UAV Trajectory on the Basis of Bearing-Only Observations, 4178-4184 (2014) · doi:10.1109/CDC.2014.7040040
[5] Zajic, T. and Mahler, R.P.S., Particle-Systems Implementation of the PHD Multitarget Tracking Filter, Proc. SPIE Conf. Series, 2003, vol. 5096, pp. 291-299. · doi:10.1117/12.488533
[6] Stepanov, O. A.; Toropov, A. B., Applying Sequential Monte Carlo Methods with Analytic Integration Procedures in Processing Navigational Information, 3730-3740 (2014)
[7] Lanneuville, D.; Houssineau, J., Passive Multi-Target Tracking with GM-PHD Filter, 1-7 (2010)
[8] Bar-Shalom, Y., Willett, P.K., and Tian, X., Tracking and Data Fusion: A Handbook of Algorithms, Storrs: YBS-Press, 2011, http://books.google.ru/books?id=2aOiuAAACAAJ.
[9] Lin, X., Kirubarajan, T., Bar-Shalom, Y., et al., Comparison of EKF Pseudomeasurement and Particle Filters for a Bearing-Only Target Tracking Problem, Proc. SPIE Conf. Series Signal and Data Processing of Small Targets, Oliver E. Drummond, Ed., 2002, vol. 4728, pp. 240-250.
[10] Liu, P.T., An Optimum Approach in Target Tracking with Bearing Measurements, J. Optimiz. Theory Appl., 1988, vol. 56, no. 2, pp. 205-214. · Zbl 0619.90106 · doi:10.1007/BF00939407
[11] Hammel, S.E., Liu, P.T., Hilliard, E.J., et al., Optimal Observer Motion for Localization with Bearing Measurements, Comput. Math. Appl., 1989, vol. 18, no. 3, pp. 171-180. · Zbl 0684.93055 · doi:10.1016/0898-1221(89)90134-X
[12] Oshman, Y. and Davidson, P., Optimization of Observer Trajectories for Bearings-Only Target Localization, IEEE Trans. Aerospace Electron. Syst, 1999, vol. 35, no. 3, pp. 892-902. · doi:10.1109/7.784059
[13] Miller, S. A.; Harris, Z. A.; Chong, E. K.P., A POMDP Framework for Coordinated Guidance of Autonomous UAVs for Multitarget Tracking, 1-7 (2009) · Zbl 1184.90169
[14] Moiseev, N.N., Elementy teorii optimal’nykh sistem (Elements of Optimal System Theory), Moscow: Nauka, 1975. · Zbl 0314.49005
[15] Letov, A.M., Dinamika poleta i upravlenie (Flight Dynamics and Control), Moscow: Nauka, 1969.
[16] Menegozzi, L.N., Harding, A.C., and van Alstine, E.F., Azimuth and Elevation Direction Finding System Based on Hybrid Amplitude/Phase Comparison, US Patent 6 061 022, 2000, http://www.google.com/patents/US6061022.
[17] Adamy, D.L., EW 103: Tactical Battlefield Communications Electronic Warfare, Boston: Artech House, 2009, http://books.google.ru/books?id=7793SVcHOS8C.
[18] Ponda, S. S.; Kolacinski, R. M.; Frazzoli, E., Trajectory Optimization for Target Localization Using Small Unmanned Aerial Vehicles, AIAA Guidance (2009)
[19] Chernous’ko, F.L. and Banichuk, N.V., Variatsionnye zadachi mekhaniki i upravleniya. Chislennye metody (Variational Problems of Mechanics and Control. Numerical Methods), Moscow: Nauka, 1973.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.