×

Transmission dynamics and optimal control of measles epidemics. (English) Zbl 1338.92135

Summary: Based on the mechanism and characteristics of measles transmission, we propose a susceptible-exposed-infectious-recovered (SEIR) measles epidemic model with vaccination and investigate the effect of vaccination in controlling the spread of measles. We obtain two critical threshold values, \(\mu_{c 1}\) and \(\mu_{c 2}\), of the vaccine coverage ratio. Measles will be extinct when the vaccination ratio \(\mu > \mu_{c 1}\), endemic when \(\mu_{c 2} < \mu < \mu_{c 1}\), and outbreak periodically when \(\mu < \mu_{c 2}\). In addition, we apply the optimal control theory to obtain an optimal vaccination strategy \(\mu^\ast(t)\) and give some numerical simulations for those theoretical findings. Finally, we use our model to simulate the data of measles cases in the U.S. from 1951 to 1962 and design a control strategy.

MSC:

92D30 Epidemiology
49N90 Applications of optimal control and differential games
Full Text: DOI

References:

[1] Anderson, R. M.; May, R. M., Infectious Diseases of Humans Dynamics and Control (1991), Oxford University Press: Oxford University Press Oxford
[2] Bartlett, M. S., Measles periodicity and community size, J. R. Stat. Soc. A, 120, 48-70 (1957)
[3] Bartlett, M. S., The critical community size for measles in the U.S., J. R. Stat. Soc. A, 123, 37-44 (1960)
[4] Bauch, C. T.; Earn, D. J.D., Vaccination and the theory of games, Proc. Natl Acad. Sci. USA, 101, 13391-13394 (2004) · Zbl 1064.91029
[5] Bauch, C. T.; Galvani, A. P.; Earn, D. J.D., Group interest versus self-interest in smallpox vaccination policy, Proc. Natl Acad. Sci. USA, 100, 10564-10567 (2003) · Zbl 1065.92038
[6] Boccaletti, S.; Bianconi, G.; Criado, R., The structure and dynamics of multilayer networks, Phys. Rep., 554, 1-122 (2014)
[7] Bolker, B. M.; Grenfell, B. T., Chaos and biological complexity in measles dynamics, Proc. R. Soc. London B, 251, 75-81 (1993)
[8] Bolker, B. M.; Grenfell, B. T., Space, persistence and dynamics of measles epidemics, Philos Trans. R. Soc. Lond. B, 348, 309-320 (1995)
[9] Bolker, B. M.; Grenfell, B. T., Impact of vaccination on the spatial correlation and persistence of measles dynamics, Proc. Natl Acad. Sci. USA, 93, 12648-12653 (1996)
[12] Conlan, A. J.K.; Grenfell, B. T., Seasonality and the persistence and invasion of measles, Proc. R. Soc. B, 274, 1133-1141 (2007)
[13] Culshaw, R. V.; Ruan, S.; Spiteri, R. J., Optimal HIV treatment by maximising immune response, J. Math. Biol., 48, 545-562 (2004) · Zbl 1057.92035
[14] Diekmann, O.; Heesterbeek, J. A.P., Mathematical Epidemiology of Infective Diseases: Model Building. Mathematical Epidemiology of Infective Diseases: Model Building, Analysis and Interpretation (2000), Wiley: Wiley New York · Zbl 0997.92505
[15] Diekmann, O.; Heesterbeek, J. A.P.; Roberts, M. G., The construction of next generation matrices for compartmental epidemic models, J. R. Soc. Interface, 7, 873-885 (2000)
[16] Earn, D. J.D.; Rohani, P.; Bolker, B. M.; Grenfell, B. T., A simple model for complex dynamical transitions in epidemics, Science, 287, 667-670 (2000)
[17] Ferrari, M. J.; Grais, R. F.; Bharti, N.; Conlan, A. J.K.; Bjrnstad, O. N.; Wolfson, L. J.; Guerin, P. J.; Djibo, A.; Grenfell, B. T., The dynamics of measles in sub-Saharan Africa, Nature, 451, 679-684 (2008)
[18] Fleming, W. H.; Rishel, R. W., Deterministic and Stochastic Optimal Control (1975), Springer-Verlag: Springer-Verlag New York/Berlin · Zbl 0323.49001
[19] Grenfell, B. T., Chance and chaos in measles dynamics, J. R. Stat. Soc. B, 54, 383-398 (1992)
[20] Hassard, B. D.; Kazarinoff, N. D.; Wan, Y.-H., Theory and Applications of Hopf Bifurcation (1981), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0474.34002
[21] Kar, T. K.; Batabyal, A., Stability analysis and optimal control of an SIR epidemic model with vaccination, BioSystems, 104, 127-135 (2011)
[22] Karrakchou, J.; Rachik, M.; Gourari, S., Optimal control and infectiology: application to an HIV/AIDS model, Appl. Math. Comput., 177, 807-818 (2006) · Zbl 1096.92031
[23] Keeling, M. J.; Grenfell, B. T., Disease extinction and community size: modeling the persistence of measles, Science, 275, 65-67 (1997)
[24] Keeling, M. J.; Rohani, P., Modeling Infectious Diseases in Humans and Animals (2007), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 1279.92038
[25] Kirschner, D. E.; Lenhart, S.; Serbin, S., Optimal control of the chemotherapy of HIV, J. Math. Biol., 35, 775-792 (1997) · Zbl 0876.92016
[26] Lenhart, S.; Workman, J. T., Optimal Control Applied to Biological Models (2007), Chapman Hall/CRC: Chapman Hall/CRC Boca Raton, FL · Zbl 1291.92010
[27] Liu, D.; Ruan, S.; Zhu, D., Stable periodic oscillations in a two-stage cancer model of tumor and immune system interactions, Math. Biosci. Eng., 9, 347-368 (2012) · Zbl 1259.34028
[28] Panum, P. L., Observations Made During the Epidemic of Measles on the Faroe Islands in the Year 1846 (1940), Delta Omega Society: Delta Omega Society Cleveland
[29] van den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 285, 29-48 (2002) · Zbl 1015.92036
[30] Wang, J.; Liu, S.; Zheng, B.; Takeuchi, Y., Qualitative and bifurcation analysis using an SIR model with a saturated treatment function, Math. Comput. Model., 55, 710-722 (2012) · Zbl 1255.34042
[31] Wang, L.; Li, X., Spatial epidemiology of net worked metapopulation: an overview, Chin. Sci. Bull., 59, 3511-3522 (2014)
[32] Wang, L.; Wang, Z.; Zhang, Y.; Li, X., How human location-specific contact patterns impact spatial transmission between populations?, Sci. Rep., 3, 1468 (2013)
[34] Zhang, J., The Geometric Theory and Bifurcation Problem of Ordinary Differential Equations (1987), Peking University Press: Peking University Press Beijing
[35] Zhang, G.; Sun, Q., Noise-induced enhancement of network reciprocity in social dilemmas, Chaos, Solitons Fractals, 51, 31-35 (2003) · Zbl 1294.91019
[36] Zhang, H.; Yang, Z.; Wu, Z., Braess’s paradox in epidemic game: better condition results in less payoff, Sci. Rep., 3, 3292 (2013)
[37] Zhang, H.; Zhang, J.; Zhou, C., Hub nodes inhibit the outbreak of epidemic under voluntary vaccination, New J. Phys., 12, 023015 (2010)
[38] Zhang, H.; Wu, Z.; Tang, M.; Lai, Y., Effects of behavioral response and vaccination policy on epidemic spreading - an approach based on evolutionary-game dynamics, Sci. Rep., 4, 5666 (2014)
[39] Zhang, H.; Wu, Z.; Xu, X., Impacts of subsidy policies on vaccination decisions in contact networks, Phys. Rev. E, 88, 012813 (2013)
[40] Zhang, X.; Chen, L., The periodic solution of a class of epidemic models, Comput. Math. Appl., 38, 61-71 (1999) · Zbl 0939.92031
[41] Zhang, X.; Zhao, Y.; Neumann, A., Partial immunity and vaccination for influenza, J. Comput. Biol., 17, 1689-1696 (2009)
[42] Xia, C.; Wang, Z.; Sanz, J., Effects of delayed recovery and nonuniform transmission on the spreading of diseases in complex networks, Physica A, 392, 1577-1585 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.