×

Riemannian optimization for registration of curves in elastic shape analysis. (English) Zbl 1338.49088

Summary: In elastic shape analysis, a representation of a shape is invariant to translation, scaling, rotation, and reparameterization, and important problems such as computing the distance and geodesic between two curves, the mean of a set of curves, and other statistical analyses require finding a best rotation and reparameterization between two curves. In this paper, we focus on this key subproblem and study different tools for optimizations on the joint group of rotations and reparameterizations. We develop and analyze a novel Riemannian optimization approach and evaluate its use in shape distance computation and classification using two public datasets. Experiments show significant advantages in computational time and reliability in performance compared to the current state-of-the-art method. A brief version of this paper can be found in [W. Huang et al., “Riemannian optimization for elastic shape analysis”, in: Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems (2014)].

MSC:

49Q10 Optimization of shapes other than minimal surfaces
49L20 Dynamic programming in optimal control and differential games
49M15 Newton-type methods
90C39 Dynamic programming
90C53 Methods of quasi-Newton type

Software:

Flavia
Full Text: DOI

References:

[1] Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton, NJ (2008) · Zbl 1147.65043 · doi:10.1515/9781400830244
[2] Baker, C.G.: Riemannian manifold trust-region methods with applications to eigenproblems. PhD thesis, Florida State University, Department of Computational Science (2008) · Zbl 1461.65156
[3] Bertsekas, D.P.: Dynamic Programming and Optimal Control. Athena Scientific, Belmont (1995) · Zbl 0904.90170
[4] Dryden, I.L., Mardia, K.V.: Statistical Shape Analysis. Wiley, Chichester (1998) · Zbl 0901.62072
[5] Huang, W., Absil, P.-A., Gallivan, K.A.: A Riemannian symmetric rank-one trust-region method. Math. Progr. 150(2), 179-216 (2015) · Zbl 1314.65083 · doi:10.1007/s10107-014-0765-1
[6] Huang, W., Gallivan, K.A., Absil, P.-A.: A broyden class of quasi-Newton methods for Riemannian optimization. SIAM J. Optim. 25(3), 1660-1685 (2015) · Zbl 1461.65156 · doi:10.1137/140955483
[7] Huang, W., Gallivan, K.A., Srivastava, A., Absil, P.-A.: Riemannian optimization for elastic shape analysis. In: Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems (2014) · Zbl 1338.49088
[8] Huang, W.: Optimization algorithms on Riemannian manifolds with applications. PhD thesis, Florida State University, Department of Mathematics (2013) · Zbl 0907.68158
[9] Huang, W., You, Y., Gallivan, K., Absil, P.-A.: Karcher mean in elastic shape analysis. In: Drira, H., Kurtek, S., Turaga, P. (eds.). Proceedings of the 1st International Workshop on Differential Geometry in Computer Vision for Analysis of Shapes, Images and Trajectories, pp. 2.1-2.11. BMVA Press (September 2015)
[10] Kendall, D.G.: Shape manifolds, procrustean metrics, and complex projective spaces. Bull. Lond. Math. Soc. 16(2), 81-121 (1984) · Zbl 0579.62100 · doi:10.1112/blms/16.2.81
[11] Klassen, E., Srivastava, A., Mio, W., Joshi, S.H.: Analysis of planar shapes using geodesic paths on shape spaces. IEEE Trans. Pattern Anal. Mach. Intell. 26(3), 372-383 (2004). doi:10.1109/TPAMI.2004.1262333 · doi:10.1109/TPAMI.2004.1262333
[12] Lahiri, S., Robinson, D., Klassen, E.: Precise matching of PL curves in \[\mathbb{R}^nRn\] in the square root velocity framework, pp. 1-41 (January 2015). arXiv:1501.00577 · Zbl 1403.94020
[13] O’Neill, B.: Semi-Riemannian Geometry. Academic Press Incorporated (Harcourt Brace Jovanovich Publishers), New York (1983) · Zbl 0531.53051
[14] Qi, C.: Numerical optimization methods on Riemannian manifolds. PhD thesis, Florida State University, Department of Mathematics (2011)
[15] Ring, W., Wirth, B.: Optimization methods on Riemannian manifolds and their application to shape space. SIAM J. Optim. 22(2), 596-627 (2012). doi:10.1137/11082885X · Zbl 1250.90111 · doi:10.1137/11082885X
[16] Srivastava, A., Klassen, E., Joshi, S.H., Jermyn, I.H.: Shape analysis of elastic curves in Euclidean spaces. IEEE Trans. Pattern Anal. Mach. Intell. 33(7), 1415-1428 (2011). doi:10.1109/TPAMI.2010.184 · doi:10.1109/TPAMI.2010.184
[17] Sebastian, T.B., Klein, P.N., Kimia, B.B.: On aligning curves. IEEE Trans. Pattern Anal. Mach. Intell. 25(1), 116-125 (2003). doi:10.1109/TPAMI.2003.1159951 · doi:10.1109/TPAMI.2003.1159951
[18] Temple University. Shape similarity research project. www.dabi.temple.edu/ shape/MPEG7/dataset.html · Zbl 1314.65083
[19] Wu, S.G., Bao, F.S., Xu, E.Y., Wang, Y.-X., Chang, Y.-F., Xiang, Q.-L.: A leaf recognition algorithm for plant classification using probabilistic neural network. In: 2007 IEEE International Symposium on Signal Processing and Information Technology, pp. 11-16 (2007). arXiv:0707.4289v1
[20] You, Y., Huang, W., Gallivan, K.A., Absil, P.-A.: A Riemannian approach for computing geodesics in elastic shape analysis. In: 3rd IEEE Global Conference on Signal and Information Processing (December 2015). To appear
[21] Younes, L., Michor, P., Shah, J., Mumford, D.: A metric on shape space with explicit geodesics. Rendiconti Lincei - Matematica e Applicazioni 9(1), 25-57 (2008). doi:10.4171/RLM/506 · Zbl 1142.58013 · doi:10.4171/RLM/506
[22] Younes, L.: Computable elastic distances between shapes. SIAM J. Appl. Math. 58(2), 565-586 (1998). doi:10.1137/S0036139995287685 · Zbl 0907.68158 · doi:10.1137/S0036139995287685
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.