×

On the invertibility of Born-Jordan quantization. (English. French summary) Zbl 1338.47057

Summary: As a consequence of the Schwartz kernel theorem, any linear continuous operator \(\widehat{A}\): \(\mathcal{S}(\mathbb{R}^n) \longrightarrow \mathcal{S}^\prime(\mathbb{R}^n)\) can be written in Weyl form in a unique way, namely, it is the Weyl quantization of a unique symbol \(a \in \mathcal{S}^\prime(\mathbb{R}^{2 n})\). Hence, dequantization can always be performed, and in a unique way. Despite the importance of this topic in quantum mechanics and time-frequency analysis, the same issue for the Born-Jordan quantization seems simply unexplored, except for the case of polynomial symbols, which we also review in detail. In this paper, we show that any operator \(\widehat{A}\) as above can be written in Born-Jordan form, although the representation is never unique if one allows general tempered distributions as symbols. Then we consider the same problem when the space of tempered distributions is replaced by the space of smooth slowly increasing functions which extend to entire function in \(\mathbb{C}^{2 n}\), with growth at most exponential in the imaginary directions. We prove again the validity of such a representation, and we determine a sharp threshold for exponential growth under which the representation is unique. We employ techniques from the theory of division of distributions.

MSC:

47G30 Pseudodifferential operators
81S05 Commutation relations and statistics as related to quantum mechanics (general)
46F10 Operations with distributions and generalized functions

References:

[1] Atiyah, M., Resolution of singularities and division of distributions, Commun. Pure Appl. Math., 23, 2, 145-150 (1970) · Zbl 0188.19405
[2] Boggiatto, P.; De Donno, G.; Oliaro, A., Time-frequency representations of Wigner type and pseudo-differential operators, Trans. Am. Math. Soc., 362, 9, 4955-4981 (2010) · Zbl 1200.47064
[3] Bonet, J.; Frerick, L.; Jordà, E., The division problem for tempered distributions of one variable, J. Funct. Anal., 262, 2349-2358 (2012) · Zbl 1246.46041
[4] Born, M.; Jordan, P., Zur Quantenmechanik, Z. Phys., 34, 858-888 (1925) · JFM 51.0728.08
[5] Boulkhemair, A., \(L^2\) estimates for pseudodifferential operators, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), 22, 1, 155-183 (1995) · Zbl 0844.35145
[6] Cohen, L., Generalized phase-space distribution functions, J. Math. Phys., 7, 781-786 (1966)
[7] Cohen, L., The Weyl Operator and Its Generalization (2012), Springer Science & Business: Springer Science & Business Media
[9] Cordero, E.; Nicola, F., Sharp continuity results for the short-time Fourier transform and for localization operators, Monatshefte Math., 162, 251-276 (2011) · Zbl 1217.47091
[10] Cordero, E.; Nicola, F., Pseudodifferential operators on \(L^p\), Wiener amalgam and modulation spaces, Int. Math. Res. Not., 10, 1860-1893 (2010) · Zbl 1194.35525
[11] Cordero, E.; Tabacco, A.; Wahlberg, P., Schrödinger-type propagators, pseudodifferential operators and modulation spaces, J. Lond. Math. Soc., 88, 2, 375-395 (2013) · Zbl 1301.35230
[12] Coutinho, S. C., A Primer of Algebraic D-Modules, Lond. Math. Soc. Stud. Texts, vol. 33 (1995), Cambridge University Press · Zbl 0848.16019
[13] Cunanan, J., On \(L^p\)-boundedness of pseudo-differential operators of Sjöstrand’s class · Zbl 1386.35507
[14] de Gosson, M., Born-Jordan quantization and the equivalence of the Schrödinger and Heisenberg pictures, Found. Phys., 44, 10, 1096-1106 (2014) · Zbl 1302.81115
[15] de Gosson, M., Symplectic Methods in Harmonic Analysis and in Mathematical Physics (2011), Birkhäuser · Zbl 1247.81510
[16] de Gosson, M., Symplectic covariance properties for Shubin and Born-Jordan pseudo-differential operators, Trans. Am. Math. Soc., 365, 6, 3287-3307 (2013) · Zbl 1278.47050
[17] de Gosson, M.; Luef, F., Preferred quantization rules: Born-Jordan vs. Weyl; applications to phase space quantization, J. Pseud.-Differ. Oper. Appl., 2, 1, 115-139 (2011) · Zbl 1278.81121
[18] Domingo, H. B.; Galapon, E. A., Generalized Weyl transform for operator ordering: polynomial functions in phase space, J. Math. Phys., 56, Article 022194 pp. (2015) · Zbl 1311.81212
[19] Gröchenig, K., Foundations of Time-Frequency Analysis (2001), Birkhäuser: Birkhäuser Boston · Zbl 0966.42020
[20] Gröchenig, K., Time-frequency analysis of Sjöstrand’s class, Rev. Mat. Iberoam., 22, 703-724 (2006) · Zbl 1127.35089
[21] Hörmander, L., On the division of distributions, Ark. Mat., 3, 555-568 (1958) · Zbl 0131.11903
[22] Hörmander, L., The Analysis of Linear Partial Differential Operators, vol. 1 (1983), Springer-Verlag · Zbl 0521.35001
[23] Kobayashi, M.; Sugimoto, M.; Tomita, N., On the \(L^2\)-boundedness of pseudo-differential operators and their commutators with symbols in \(α\)-modulation spaces, J. Math. Anal. Appl., 350, 1, 157-169 (2009) · Zbl 1153.47041
[24] Langenbruch, M., Real roots of polynomials and right inverses for partial differential operators in the space of tempered distributions, Proc. R. Soc. Edinb., 114A, 169-179 (1990) · Zbl 0711.35032
[25] Łojasiewicz, S., Sur le problème de la division, Stud. Math., 18, 87-136 (1959) · Zbl 0115.10203
[26] McCoy, N. H., On the function in quantum mechanics which corresponds to a given function in classical mechanics, Proc. Natl. Acad. Sci. USA, 18, 11, 674-676 (1932) · Zbl 0006.04003
[27] Plebański, J. F.; Praznowski, M.; Tosiek, J., The Weyl-Wigner-Moyal formalism II. The Moyal bracket, Acta Phys. Pol., 27, 9, 1961-1990 (1996) · Zbl 0966.81530
[28] Przanowski, M.; Tosiek, J., Weyl-Wigner-Moyal formalism. I. Operator ordering, Acta Phys. Pol. B, 26, 1703-1716 (1995) · Zbl 0966.81529
[29] Schwartz, L., Théorie des Distributions (1966), Hermann: Hermann Paris · Zbl 0149.09501
[30] Stein, E. M., Harmonic Analysis (1993), Princeton University Press: Princeton University Press Princeton · Zbl 0821.42001
[31] Sugimoto, M., \(L^p\)-boundedness of pseudo-differential operators satisfying Besov estimates II, J. Math. Soc. Jpn., 40, 105-122 (1988) · Zbl 0621.47046
[32] Sugimoto, M., Pseudo-differential operators on Besov spaces, Tsukuba J. Math., 12, 43-63 (1988) · Zbl 0667.35079
[33] Sugimoto, M.; Tomita, N., Boundedness properties of pseudo-differential and Calderón-Zygmund operators on modulation spaces, J. Fourier Anal. Appl., 14, 1, 124-143 (2008) · Zbl 1144.47039
[34] Toft, J., Continuity properties for modulation spaces, with applications to pseudo-differential calculus. I, J. Funct. Anal., 207, 2, 399-429 (2004) · Zbl 1083.35148
[35] Toft, J., Continuity properties for modulation spaces, with applications to pseudo-differential calculus. II, Ann. Glob. Anal. Geom., 26, 1, 73-106 (2004) · Zbl 1098.47045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.