×

A class of Hamiltonians for a three-particle fermionic system at unitarity. (English) Zbl 1338.47002

Summary: We consider a quantum mechanical three-particle system made of two identical fermions of mass one and a different particle of mass \(m\), where each fermion interacts via a zero-range force with the different particle. In particular we study the unitary regime, i.e., the case of infinite two-body scattering length. The Hamiltonians describing the system are, by definition, self-adjoint extensions of the free Hamiltonian restricted on smooth functions vanishing at the two-body coincidence planes, i.e., where the positions of two interacting particles coincide. It is known that for \(m\) larger than a critical value \(m^\ast\simeq(13.607)^{-1}\) a self-adjoint and lower bounded Hamiltonian \(H_0\) can be constructed, whose domain is characterized in terms of the standard point-interaction boundary condition at each coincidence plane. Here we prove that for \(m\in (m^\ast,m^{\ast\ast})\), where \(m^{\ast\ast}\simeq (8.62)^{-1}\), there is a further family of self-adjoint and lower bounded Hamiltonians \(H_{0,\beta}\), \(\beta\in\mathbb R\), describing the system. Using a quadratic form method, we give a rigorous construction of such Hamiltonians and we show that the elements of their domains satisfy a further boundary condition, characterizing the singular behavior when the positions of all the three particles coincide.

MSC:

47A07 Forms (bilinear, sesquilinear, multilinear)
47A57 Linear operator methods in interpolation, moment and extension problems
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
81V45 Atomic physics

References:

[1] Albeverio, S., Gesztesy, F., Hoegh-Krohn, R., Holden, H.: Solvable Models in Quantum Mechanics. Springer-Verlag, New-York (1988) · Zbl 0679.46057 · doi:10.1007/978-3-642-88201-2
[2] Alonso, A., Simon, B.: The Birman-Krein-Vishik theory of self-adjoint extensions of semi-bounded operators. J. Operator Theory 4, 251-270 (1980) · Zbl 0467.47017
[3] Birman, M.S.: On the self-adjoint extensions of positive definite operators (in Russian). Math. Sb. 38, 431-450 (1956). English translation available on preprint SISSA 08/2015/MATE. http://urania.sissa.it/xmlui/handle/1963/34443
[4] Braaten, E., Hammer, H.W.: Universality in few-body systems with large scattering length. Phys. Rep. 428, 259-390 (2006) · doi:10.1016/j.physrep.2006.03.001
[5] Castin, Y., Mora, C., Pricoupenko, L.: Four-Body Efimov Effect for Three Fermions and a Lighter Particle. Phys. Rev. Lett. 105, 223201 (2010) · doi:10.1103/PhysRevLett.105.223201
[6] Castin, Y., Tignone, E.: Trimers in the resonant (2 + 1)−fermion problem on a narrow Feshbach resonance: Crossover from Efimovian to hydrogenoid spectrum. Phys. Rev. A 84, 062704 (2011) · doi:10.1103/PhysRevA.84.062704
[7] Castin, Y., Werner, F: The Unitary Gas and its Symmetry Properties. In Lect. Notes Phys. 836, 127-189 (2011) · doi:10.1007/978-3-642-21978-8_5
[8] Correggi, M., Dell’Antonio, G., Finco, D., Michelangeli, A., Teta, A.: Stability for a System of N Fermions Plus a Different Particle with Zero-Range Interactions. Rev. Math. Phys. 24, 1250017 (2012) · Zbl 1272.81074 · doi:10.1142/S0129055X12500171
[9] Correggi, M., Finco, D., Teta, A.: Energy lower bound for the unitary N + 1 fermionic model. Europhys. Lett. 111, 10003 (2015) · Zbl 1338.47002 · doi:10.1209/0295-5075/111/10003
[10] Dell’Antonio, G., Figari, R., Teta, A.: Hamiltonians for Systems of N Particles Interacting through Point Interactions. Ann. Inst. H. Poincaré Phys. Théor 60, 253-290 (1994) · Zbl 0808.35113
[11] Efimov, V.: Energy levels of three resonantly interacting particles. Nucl. Phys. A 210, 157 (1973) · doi:10.1016/0375-9474(73)90510-1
[12] Faddeev, L., Minlos, R.A: On the point interaction for a three-particle system in Quantum Mechanics. Soviet Phys. Dokl. 6, 1072-1074 (1962)
[13] Finco, D., Teta, A.: Quadratic Forms for the Fermionic Unitary Gas Model. Rep. Math. Phys. 69, 131-159 (2012) · Zbl 1252.82067 · doi:10.1016/S0034-4877(12)60022-6
[14] Kartavtsev, O.I., Malykh, A.V.: Recent advances in description of few two- component fermions. Phys. At. Nucl. 77, 430-437 (2014) · doi:10.1134/S1063778814030120
[15] Michelangeli, A., Schmidbauer, C.: Binding properties of the (2+1)-fermion system with zero-range interspecies interaction. Phys. Rev. A 87, 053601 (2013) · doi:10.1103/PhysRevA.87.053601
[16] Minlos, R.A: On the point interaction of three particles, Lect. Notes in Physics 324, Springer (1989) · Zbl 0738.47008
[17] Minlos, R.A.: On Pointlike Interaction between Three Particles: Two Fermions and Another Particle ISRN Mathematical Physics, 230245 (2012) · Zbl 1253.81061
[18] Minlos, R.A: On point-like interaction between n fermions and another particle. Moscow Math. J. 11, 113-127 (2011) · Zbl 1222.81174
[19] Minlos, R.A.: A system of three quantum particles with point-like interactions. Russian Math. Surveys 69, 539-564 (2014) · Zbl 1300.81039 · doi:10.1070/RM2014v069n03ABEH004900
[20] Trefzger, C., Castin, Y.: Self-energy of an impurity in an ideal Fermi gas to second order in the interaction strength. Phys. Rev. A 90, 033619 (2014) · doi:10.1103/PhysRevA.90.033619
[21] Werner, F.: Ph.D. Thesis, École Normale Supérieure (2008)
[22] Werner, F., Castin, Y.: Unitary gas in an isotropic harmonic trap: symmetry properties and applications. Phys. Rev. A 74, 053604 (2006) · doi:10.1103/PhysRevA.74.053604
[23] Werner, F., Castin, Y.: Unitary Quantum Three-Body Problem in a Harmonic Trap. Phys. Rev. Lett. 97, 150401 (2006) · doi:10.1103/PhysRevLett.97.150401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.