×

On a parabolic equation related to the \(p\)-Laplacian. (English) Zbl 1338.35235

Summary: Consider a parabolic equation related to the \(p\)-Laplacian. If the diffusion coefficient of the equation is degenerate on the boundary, no matter we can define the trace of the solution on the boundary or not, by choosing a suitable test function, the stability of the solutions always can be established without a boundary condition.

MSC:

35K55 Nonlinear parabolic equations
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
35R35 Free boundary problems for PDEs

References:

[1] Yin, J, Wang, C: Properties of the boundary flux of a singular diffusion process. Chin. Ann. Math., Ser. B 25(2), 175-182 (2004) · Zbl 1052.35105 · doi:10.1142/S0252959904000184
[2] Zhan, H, Yuan, H: A diffusion convection equation with degeneracy on the boundary. J. Jilin Univ. Sci. Ed. 53(3), 353-358 (2015) (in Chinese)
[3] Zhan, H: The boundary value condition of an evolutionary p(x)\(p(x)\)-Laplacian equation. Bound. Value Probl. 2015, 112 (2015). doi:10.1186/s13661-015-0377-6 · Zbl 1381.35098 · doi:10.1186/s13661-015-0377-6
[4] Zhao, JN: Existence and nonexistence of solutions for ut=div(|∇u|p−2∇u)+f(∇u,u,x,t)\({u_t} =div({| {\nabla u} |^{p - 2}}\nabla u) + f(\nabla u,u,x,t)\). J. Math. Anal. Appl. 172(1), 130-146 (1993) · Zbl 0799.35130 · doi:10.1006/jmaa.1993.1012
[5] Wang, J, Gao, W, Su, M: Periodic solutions of non-Newtonian polytropic filtration equations with nonlinear sources. Appl. Math. Comput. 216, 1996-2009 (2010) · Zbl 1425.35092 · doi:10.1016/j.amc.2010.03.030
[6] Lee, K, Petrosyan, A, Vazquez, JL: Large time geometric properties of solutions of the evolution p-Laplacian equation. J. Differ. Equ. 229, 389-411 (2006) · Zbl 1108.35097 · doi:10.1016/j.jde.2005.07.028
[7] Yin, J, Wang, C: Evolutionary weighted p-Laplacian with boundary degeneracy. J. Differ. Equ. 237, 421-445 (2007) · Zbl 1133.35065 · doi:10.1016/j.jde.2007.03.012
[8] Benedikt, J, Girg, P, Kotrla, L, Takáč, P: Nonuniqueness and multi-bump solutions in parabolic problems with the p-Laplacian. J. Differ. Equ. 260, 991-1009 (2016) · Zbl 1332.35194 · doi:10.1016/j.jde.2015.09.015
[9] Zhan, H: The solutions of a hyperbolic-parabolic mixed type equation on half-space domain. J. Differ. Equ. 259, 1449-1481 (2015) · Zbl 1316.35213 · doi:10.1016/j.jde.2015.03.005
[10] Antontsev, SN, Shmarev, SI: Anisotropic parabolic equations with variable nonlinearity. Publ. Mat. 53, 355-399 (2009) · Zbl 1191.35152 · doi:10.5565/PUBLMAT_53209_04
[11] Antontsev, SN, Shmarev, SI: Parabolic equations with double variable nonlinearities. Math. Comput. Simul. 81, 2018-2032 (2011) · Zbl 1223.35207 · doi:10.1016/j.matcom.2010.12.015
[12] Ragusa, MA: Cauchy-Dirichlet problem associated to divergence form parabolic equations. Commun. Contemp. Math. 6(3), 377-393 (2004) · Zbl 1077.35053 · doi:10.1142/S0219199704001392
[13] Gu, L: Second Order Parabolic Partial Differential Equations. The Publishing Company of Xiamen University, Xiamen (2002) (in Chinese)
[14] Taylor, ME: Partial Differential Equations III. Springer, Berlin (1999) · Zbl 0906.00008
[15] Zhan, H: The solution of convection-diffusion equation. Chin. Ann. Math. 34(2), 235-256 (2013) · Zbl 1299.35163
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.