×

A method to distinguish between lysine acetylation and lysine methylation from protein sequences. (English) Zbl 1337.92162

Summary: Lysine acetylation and methylation are two major post-translational modifications of lysine residues. They play vital roles in both biological and pathological processes. Specific lysine residues in H3 histone protein tails appear to be targeted for either acetylation or methylation. Hence it is very challenging to distinguish between acetylated and methylated lysine residues using computational methods. This work presents a method that incorporates protein sequence information, secondary structure and amino acid properties to differentiate acetyl-lysine from methyl-lysine. We apply an encoding scheme based on grouped weight and position weight amino acid composition to extract sequence information and physicochemical properties around lysine sites. The proposed method achieves an accuracy of 93.3% using a jackknife test. Feature analysis demonstrates that the prediction model with multiple features can take full advantage of the supplementary information from different features to improve classification performance and prediction robustness. Analysis of the characteristics of lysine residues which can be either methylated or acetylated shows that they are more similar to methyl-lysine than to acetyl-lysine.

MSC:

92D20 Protein sequences, DNA sequences
92C40 Biochemistry, molecular biology
Full Text: DOI

References:

[1] Altschul, S. F.; Madden, T. L.; Schaffer, A. A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D. J., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res., 25, 3389-3402 (1997)
[2] Anekonda, T. S.; Reddy, P. H., Neuronal protection by sirtuins in Alzheimer’s disease, J. Neurochem., 96, 305-313 (2006)
[3] Bannister, A. J.; Kouzarides, T., Reversing histone methylation, Nature, 436, 1103-1106 (2005)
[4] Basu, A.; Rose, K. L.; Zhang, J. M.; Beavis, R. C.; Ueberheide, B.; Garcia, B. A.; Chait, B.; Zhao, Y. M.; Hunt, D. F.; Segal, E.; Allis, C. D.; Hake, S. B., Proteome-wide prediction of acetylation substrates, Proc. Nat. Acad. Sci. U.S.A., 106, 13785-13790 (2009)
[5] Binns, D.; Dimmer, E.; Huntley, R.; Barrell, D.; O’Donovan, C.; Apweiler, R., QuickGO: a web-based tool for Gene Ontology searching, Bioinformatics, 25, 3045-3046 (2009)
[6] Brunt, A.; Sweeney, L. B.; Sturgill, J. F.; Chua, K. F.; Greer, P. L.; Lin, Y.; Tran, H.; Ross, S. E.; Mostoslavsky, R.; Cohen, H. Y.; Hu, L. S.; Cheng, H. L.; Jedrychowski, M. P.; Gygi, S. P.; Sinclair, D. A.; Alt, F. W.; Greenberg, M. E., Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase, Science, 303, 2011-2015 (2004)
[7] Buchan, D. W.; Ward, S. M.; Lobley, A. E.; Nugent, T. C.; Bryson, K.; Jones, D. T., Protein annotation and modelling servers at University College London, Nucleic Acids Res., 38, W563-W568 (2010)
[8] Cai, Y. D.; Lin, S.; Chou, K. C., A novel approach predicting the signal peptides and their cleavage sites, Peptides, 24, 159-161 (2003)
[9] Chang, C.C., Lin, C.J., 2001. LIBSVM: a library for support vector machines [software], 〈http://www.csie.ntu.edu.tw/∼cjlin/libsvm〉; Chang, C.C., Lin, C.J., 2001. LIBSVM: a library for support vector machines [software], 〈http://www.csie.ntu.edu.tw/∼cjlin/libsvm〉
[10] Chen, H.; Xue, Y.; Huang, N.; Yao, X.; Sun, Z., MeMo: a web tool for prediction of protein methylation modifications, Nucleic Acids Res., 3, W249-W253 (2006)
[11] Chou, K. C., Prediction of protein cellular attributes using pseudo-amino-acid composition, Proteins, 43, 246-255 (2001)
[12] Chou, K. C., Pseudo amino acid composition and its applications in bioinformatics, proteomics and system biology, Curr. Proteomics, 6, 262-274 (2009)
[13] Chou, K. C., Some remarks on protein attribute prediction and pseudo amino acid composition, J. Theor. Biol., 273, 236-247 (2011) · Zbl 1405.92212
[14] Chou, K. C.; Shen, H. B., Cell-PLoc: a package of Web servers for predicting subcellular localization of proteins in various organisms, Nat. Protoc., 3, 153-162 (2008)
[15] Chou, K. C.; Zhang, C. T., Prediction of protein structural classes, Crit. Rev. Biochem. Mol. Biol., 30, 275-349 (1995)
[16] Choudhary, C.; Kumar, C.; Gnad, F.; Nielsen, M. L.; Rehman, M.; Walther, T. C.; Olsen, J. V.; Mann, M., Lysine acetylation targets protein complexes and co-regulates major cellular functions, Science, 325, 834-840 (2009)
[17] Crooks, G. E.; Hon, G.; Chandonia, J. M.; Brenner, S. E., WebLogo: a sequence logo generator, Genome Res., 14, 1188-1190 (2004)
[18] Daily, K.; Radivojac, P.; Dunker, A., Intrinsic disorder and protein modifications: building an SVM predictor for methylation, IEEE Symp. CIBCB, 475-481 (2005)
[19] Deshpande, N.; Addess, K. J.; Bluhm, W. F.; Merino-Ott, J. C.; Townsend-Merino, W.; Zhang, Q.; Knezevich, C.; Xie, L.; Chen, L.; Feng, Z.; Green, R. K.; Flippen-Anderson, J. L.; Westbrook, J.; Berman, H. M.; Bourne, P. E., The RCSB Protein Data Bank: a redesigned query system and relational database based on the mmCIF schema, Nucleic Acids Res., 33, D233-D237 (2005)
[20] Fischle, W.; Franz, H.; Jacobs, S. A.; Allis, C. D.; Khorasanizadeh, S., Specificity of the chromodomain Y chromosome family of chromodomains for lysine-methylated ARK(S/T) motifs, J. Biol. Chem., 283, 19626-19635 (2008)
[21] Georgiou, D. N.; Karakasidis, T. E.; Nieto, J. J.; Torres, A., Use of fuzzy clustering technique and matrices to classify amino acids and its impact to Chou’s pseudo amino acid composition, J. Theor. Biol., 257, 17-26 (2009) · Zbl 1400.92393
[22] Gnad, F.; Ren, S. B.; Choudhary, C.; Cox, J.; Mann, M., Predicting post-translational lysine acetylation using support vector machines, Bioinformatics, 26, 1666-1668 (2010)
[23] Gruener, L.; Ismond, M. A.H., Effects of acetylation and succinylation on the physicochemical properties of the canola 12S globulin. Part I, Food Chem., 60, 357-363 (1997)
[24] Gu, Q.; Ding, Y. S.; Zhang, T. L., Prediction of G-protein-coupled receptor classes in low homology using Chou’s pseudo amino acid composition with approximate entropy and hydrophobicity patterns, Protein Peptide Lett., 17, 559-567 (2010)
[25] Iwabata, H.; Yoshida, M.; Komatsu, Y., Proteomic analysis of organ-specific post-translational lysine-acetylation and -methylation in mice by use of anti-acetyllysine and -methyllysine mouse monoclonal antibodies, Proteomics, 5, 4653-4664 (2005)
[26] Johnson, D. S.; Wei, L.; Gordon, D. B.; Bhattacharjee, A.; Curry, B.; Ghosh, J.; Brizuela, L.; Carroll, J. S.; Brown, M.; Flicek, P.; Koch, C. M.; Dunham, I.; Bieda, M.; Xu, X. Q.; Farnham, P. J.; Kapranov, P.; Nix, D. A.; Gingeras, T. R.; Zhang, X. M.; Holster, H.; Jiang, N.; Green, R. D.; Song, J. S.; Mccuine, S. A.; Anton, E.; Nguyen, L.; Trinklein, N. D.; Ye, Z.; Ching, K.; Hawkins, D.; Ren, B.; Scacheri, P. C.; Rozowsky, J.; Karpikov, A.; Euskirchen, G.; Weissman, S.; Gerstein, M.; Snyder, M.; Yang, A.; Moqtaderi, Z.; Hirsch, H.; Shulha, H. P.; Fu, Y. T.; Weng, Z. P.; Struhl, K.; Myers, R. M.; Lieb, J. D.; Liu, X. S., Systematic evaluation of variability in ChIP-chip experiments using predefined DNA targets, Genome Res., 18, 393-403 (2008)
[27] Kim, S. C.; Sprung, R.; Chen, Y.; Xu, Y.; Ball, H.; Pei, J.; Cheng, T.; Kho, Y.; Xiao, H.; Xiao, L.; Grishin, N. V.; White, M.; Yang, X. J.; Zhao, Y., Substrate and functional diversity of lysine acetylation revealed by a proteomics survey, Mol. Cell., 23, 607-618 (2006)
[28] Kouzarides, T., Chromatin modifications and their function, Cell, 128, 693-705 (2007)
[29] Lee, D. Y.; Teyssier, C.; Strahl, B. D.; Stallcup, M. R., Role of protein methylation in regulation of transcription, Endocrinol. Rev., 26, 147-170 (2005)
[30] Lee, T. Y.; Hsu, J. B.K.; Lin, F. M.; Chang, W. C.; Hsu, P. C.; Huang, H. D., N-Ace: using solvent accessibility and physicochemical properties to identify protein \(N\)-acetylation sites, J. Comput. Chem., 31, 2759-2771 (2010)
[31] Li, A.; Xue, Y.; Jin, C. J.; Wang, M. H.; Yao, X. B., Prediction of \(N^ε\)-acetylation on internal lysines implemented in Bayesian Discriminant Method, Biochem. Biophys. Res. Commun., 350, 818-824 (2006)
[32] Li, S. L.; Li, H.; Li, M. F.; Shyr, Y.; Xie, L.; Li, Y. X., Improved prediction of lysine acetylation by support vector machines, Protein Peptide Lett., 16, 977-983 (2009)
[33] Li, W.; Godzik, A., Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences, Bioinformatics, 22, 1658-1659 (2006)
[34] Lin, H. J., The modified Mahalanobis Discriminant for predicting outer membrane proteins by using Chou’s pseudo amino acid composition, J. Theor. Biol., 252, 350-356 (2008) · Zbl 1398.92076
[35] Longo, V. D.; Kennedy, B. K., Sirtuins in aging and age-related disease, Cell, 126, 257-268 (2006)
[36] Lu, Z. K.; Cheng, Z. Y.; Zhao, Y. M.; Volchenboum, S. L., Bioinformatic analysis and post-translational modification crosstalk prediction of lysine acetylation, PLoS One, 6, e28228 (2011)
[37] Marks, P. A.; Breslow, R., Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug, Nat. Biotechnol., 25, 84-90 (2007)
[38] Marmorstein, R., Structure and function of histone acetyltransferases, Cell. Mol. Life Sci., 58, 693-703 (2001)
[39] Martin, C.; Zhang, Y., The diverse functions of histone lysine methylation, Nat. Rev. Mol. Cell Biol., 6, 838-849 (2005)
[40] Matthias, P.; Yoshida, M.; Khochbin, S., HDAC6 a new cellular stress surveillance factor, Cell Cycle, 7, 7-10 (2008)
[41] Milne, J. C.; Denu, J. M., The Sirtuin family: therapeutic targets to treat diseases of aging, Curr. Opin. Chem. Biol., 12, 11-17 (2008)
[42] Nanni, L.; Lumini, A., An ensemble of reduced alphabets with protein encoding based on grouped weight for predicting DNA-binding proteins, Amino Acids, 36, 167-175 (2009)
[43] Pang, C. N.; Hayen, A.; Wilkins, M. R., Surface accessibility of protein post- translational modifications, J. Proteome Res., 6, 1833-1845 (2007)
[44] Polevoda, B.; Sherman, F., Methylation of proteins involved in translation, Mol. Microbiol., 65, 590-606 (2007)
[45] Qiu, J. D.; Huang, J. H.; Liang, R. P.; Lu, X. Q., Prediction of G-protein-coupled receptor classes based on the concept of Chou’s pseudo amino acid composition: an approach from discrete wavelet transform, Anal. Biochem., 390, 68-73 (2009)
[46] Rice, J. C.; Allis, C. D., Histone methylation versus histone acetylation: new insights into epigenetic regulation, Curr. Opin. Cell Biol., 13, 263-273 (2001)
[47] Ross, N. T.; Katt, W. P.; Hamilton, A. D., Synthetic mimetics of protein secondary structure domains, Philos. Trans. R. Soc. London, Ser. A, 368, 989-1008 (2010)
[48] Schneider, R.; Bannister, A. J.; Kouzarides, T., Unsafe SETs: histone lysine methyltransferases and cancer, Trends Biochem. Sci., 27, 396-402 (2002)
[49] Shao, J. L.; Xu, D.; Tsai, S. N.; Wang, Y. F.; Ngai, S. M., Computational identification of protein methylation sites through bi-profile bayes feature extraction, PLoS One, 4, e4920 (2009)
[50] Shaw, B. F.; Schneider, G. F.; Bilgicer, B.; Kaufman, G. K.; Neveu, J. M.; Lane, W. S.; Whitelegge, J. P.; Whitesides, G. M., Lysine acetylation can generate highly charged enzymes with increased resistance toward irreversible inactivation, Protein Sci., 17, 1446-1455 (2008)
[51] Shi, S. P.; Qiu, J. D.; Sun, X. Y.; Huang, J. H.; Huang, S. Y.; Suo, S. B.; Liang, R. P.; Zhang, L., Identify submitochondria and subchloroplast locations with pseudo amino acid composition: approach from the strategy of discrete wavelet transform feature extraction. BBA-Mol, Cell Res., 1813, 424-430 (2011)
[52] Shi, S. P.; Qiu, J. D.; Sun, X. Y.; Suo, S. B.; Huang, S. Y.; Liang, R. P., PLMLA: Prediction of lysine methylation and lysine acetylation by combining multiple features, Mol. Biosyst., 8, 1520-1527 (2012)
[53] Shien, D. M.; Lee, T. Y.; Chang, W. C.; Hsu, J. B.; Horng, J. T.; Hsu, P. C.; Wang, T. Y.; Huang, H. D., Incorporating structural characteristics for identification of protein methylation sites, J. Comput. Chem., 30, 1532-1543 (2009)
[54] Smith, B. C.; Denu, J. M., Chemical mechanisms of histone lysine and arginine modifications, BBA-Gene Regul. Mech., 1789, 45-57 (2009)
[55] Takahashi, H.; Suzuki, T.; Shirai, A.; Matsuyama, A.; Dohmae, N.; Yoshida, M., Mitochondrial localization of fission yeast manganese superoxide dismutase is required for its lysine acetylation and for cellular stress resistance and respiratory growth, Biochem. Biophys. Res. Commun., 406, 42-46 (2011)
[56] Teyssier, C.; Le Romancer, M.; Sentis, S.; Jalaguier, S.; Corbo, L.; Cavaillès, V., Protein arginine methylation in estrogen signaling and estrogen-related cancers, Trends Endocrinol. Metab., 21, 181-189 (2010)
[57] Van, B. O.; Kalkhoven, E., Aberrant forms of histone acetyltransferases in human disease, Subcell. Biochem., 41, 233-262 (2007)
[58] Vapnik, V., The Nature of Statistical Learning Theory (1995), Springer-Verlag: Springer-Verlag New York · Zbl 0833.62008
[59] Vidali, G.; Gershey, E. L.; Allfrey, V. G., Chemical studies of histone acetylation. The distribution of epsilon-\(N\)-acetyllysine in calf thymus histones, J. Biol. Chem., 243, 6361-6366 (1968)
[60] Wang, X.; Moore, S. C.; Laszckzak, M.; Ausio, J., Acetylation increases the alpha-helical content of the histone tails of the nucleosome, J. Biol. Chem., 275, 35013-35020 (2000)
[61] Xu, Y.; Wang, X. B.; Ding, J.; Wu, L. Y.; Deng, N. Y., Lysine acetylation sites prediction using an ensemble of support vector machine classifiers, J. Theor. Biol., 264, 130-135 (2010) · Zbl 1406.92223
[62] Yang, X. J., Lysine acetylation and the bromodomain: a new partnership for signaling, Bioessays, 26, 1076-1087 (2004)
[63] Yang, X. J.; Seto, E., Lysine acetylation: codified crosstalk with other posttranslational modifications, Mol. Cell., 31, 449-461 (2008)
[64] Yang, X. J.; Seto, E., The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men, Nat. Rev. Mol. Cell Biol., 9, 206-218 (2008)
[65] Zavaljevski, N.; Stevens, F. J.; Reifman, J., Support vector machines with selective kernel scaling for protein classification and identification of key amino acid positions, Bioinformatics, 18, 689-696 (2002)
[66] Zhang, Z. H.; Wang, Z. H.; Zhang, Z. R.; Wang, Y. X., A novel method for apoptosis protein subcellular localization prediction combining encoding based on grouped weight and support vector machine, FEBS Lett., 580, 6169-6174 (2006)
[67] Zhao, S.; Xu, W.; Jiang, W.; Yu, W.; Lin, Y.; Zhang, T. F.; Yao, J.; Zhou, L.; Zeng, Y. X.; Li, H.; Li, Y. X.; Shi, J.; An, W. L.; Hancock, S. M.; He, F. C.; Qin, L. X.; Chin, J.; Yang, P. Y.; Chen, X.; Lei, Q. Y.; Xiong, Y.; Guan, K. L., Regulation of cellular metabolism by protein lysine acetylation, Science, 327, 1000-1004 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.