×

Local and parallel finite element algorithms for the Steklov eigenvalue problem. (English) Zbl 1337.65143

Summary: Based on the work of J. Xu and A. Zhou [Math. Comput. 69, No. 231, 881–909 (2000; Zbl 0948.65122)], we propose and analyze in this article local and parallel finite element algorithms for the Steklov eigenvalue problem. We also prove a local error estimate which is suitable for the case that the locally refined region contains singular points lying on the boundary of domain, which is an improvement of the existing results. Numerical experiments are reported finally to validate our theoretical analysis.

MSC:

65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs

Citations:

Zbl 0948.65122

Software:

iFEM
Full Text: DOI

References:

[1] E. M.Garau and P.Morin, Convergence and quasi‐optimality of adaptive FEM for Steklov eigenvalue problems, IMA J Numer Anal31 (2011), 914-946. · Zbl 1225.65107
[2] M. G.Armentano and C.Padra, R.Rodríguez and M.Scheble, An hp finite element adaptive scheme to solve the Laplace model for UID‐solid vibrations, Comput Methods Appl Mech Eng200 (2011), 178-188. · Zbl 1225.74078
[3] A. D.Russo and A. E.Alonso, A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problem, Comput Math Appl62 (2011), 4100-4117. · Zbl 1236.65142
[4] Q.Li, Q.Lin, and H. H.Xie, Nonconforming finite element approximations of the Steklov eigenvalue problems and its lower bound approximations, Appl Math58 (2013), 129-151. · Zbl 1274.65296
[5] M. X.Li, Q.Lin, and S.H.Zhang, Extrapolation and superconvergence of the Steklov eigenvalue problems, Adv Comput Math33 (2010), 25-44. · Zbl 1213.65141
[6] P.Cheng, J.Huang, and Z.Wang, Nyström methods and extrapolation for solving Steklov eigensolutions and its application in elasticity, Numer Methods Partial Differential Equations28 (2012), 2021-2040. · Zbl 1306.74063
[7] L.Cao, L.Zhang, W.Allegretto, and Y.Lin, Multiscale asymptotic method for Steklov eigenvalue equations in composite media, SIAM J Numer Anal51 (2013), 273-296. · Zbl 1267.65172
[8] J. C.Xu and A. H.Zhou, Local and parallel finite element algorithms based on two‐grid discretizations, Math Comput69 (2000), 881-909. · Zbl 0948.65122
[9] Y. N.He, J. C.Xu and A. H.Zhou, Local and parallel finite element algorithms for the Stokes problem, Numer Math109 (2008), 415-434. · Zbl 1145.65097
[10] Y. N.He, L. Q.Mei, Y. Q.Shang, and J.Cui, Newton iterative parallel finite element algorithm for the steady Navier‐Stokes equations, J Sci Comput44 (2010), 92-106. · Zbl 1203.76003
[11] J. C.Xu and A. H.Zhou, Local and parallel finite element algorithms for eigenvalue problems, Acta Math Appl Sin Engl Ser18 (2002), 185-200. · Zbl 1015.65060
[12] H.Bi, Y. D.Yang, and H.Li, Local and parallel finite element discretizations for eigenvalue problems, SIAM J Sci Comput35 (2013), A2575-A2597. · Zbl 1292.65120
[13] Y. D.Yang and H.Bi, A two‐grid discretization scheme based on shifted‐inverse power method, SIAM J Numer Anal49 (2011), 1602-1624. · Zbl 1236.65143
[14] X. Y.Dai and A. H.Zhou, Three‐scale finite element discretizations for quantum eigenvalue problems, SIAM J Numer Anal46 (2008), 295-324. · Zbl 1160.65060
[15] Y. D.Yang and H.Bi, Local a priori/a posteriori error estimates of conforming finite elements approximation for Steklov eigenvalue problems, Sci China Math57 (2014), 1319-1329. · Zbl 1306.65274
[16] M.Dauge, Elliptic boundary value problems on corner domains: smoothness and asymptotics of solutions, Lecture Notes in Mathematics, Vol.1341, Berlin, Springer, 1988, pp. 1-212. · Zbl 0668.35001
[17] J. H.Bramble and J. E.Osborn, Approximation of Steklov eigenvalues of non‐self adjoint second order elliptic operators, A. K.Aziz (ed.), editor, Math. Foundations of the finite element method with applications to PDE, Academic, New York, 1972, pp. 387-408. · Zbl 0264.35055
[18] M. G.Armentano, The effect of reduced integration in the Steklov eigenvalue problem, Math Model Numer Anal (M2AN), 38 (2004), 27-36. · Zbl 1077.65115
[19] I.Babuska and B. Q.Guo, Regularity of the solution of elliptic problems with piecewise analytic data. Part I. Boundary value problems for linear elliptic eqnarray of second order, SIAM J Math Anal19 (1988), 172-203. · Zbl 0647.35021
[20] I.Mitrea and M.Mitrea, The Poisson problem with mixed boundary conditions in Sobolev and Besov spaces in non‐smooth domains, Trans Am Math Soc359 (2007), 4143-4182. · Zbl 1190.35063
[21] J. L.Taylor, K. A.Ott, and R. M.Brown, The mixed problem in Lipschitz domains with general decompositions of the boundary, Trans Am Math Soc365 (2013), 2895-2930. · Zbl 1275.35092
[22] I.Babuska and J. E.Osborn, Eigenvalue problems, P. G.Ciarlet (ed.) and J. L.Lions (ed.), editors, Finite element methods (Part I), Handbook of Numerical Analysis, Vol. 2, Elsevier Science Publishers, North‐Holland, 1991, pp. 641-787. · Zbl 0875.65087
[23] J.Nitsche and A. H.Schatz, Interior estimates for Ritz‐Galerkin methods, Math Comput28 (1974), 937-955. · Zbl 0298.65071
[24] L. B.Wahlbin, Local behavior in finite element methods, P. G. Ciarlet and J. L. Lions, editors, Finite element methods (Part I), Handbook of numerical analysis, Vol. 2, 1991, pp. 353-522. · Zbl 0875.65089
[25] L.Chen, iFEM: an integrated finite element method package in MAT‐ LAB., Technical Report, University of California at Irvine, California, 2009.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.