×

GIP integrators for matrix Riccati differential equations. (English) Zbl 1337.65074

Summary: Matrix Riccati Differential Equations (MRDEs) are initial value problems of the form: \[ X' = A_{21} - XA_{11} + A_{22} X - XA_{12} X,\qquad X(0) = X_0. \] These equations arise frequently throughout applied mathematics, science, and engineering. It can happen that even when the \(A_{ij}\) are smooth functions of \(t\) or constant, the solution \(X\) may have a singularity or even infinitely many singularities.
This paper shows several classes of numerical algorithms, which we call GIP integrators, that can solve for \(X\) past its singularities. Furthermore, none of the algorithms require knowledge of the placement or even existence of singularities in \(X\). Also, it is shown how embedded Runge-Kutta methods can be used to construct GIP integrators to not only approximate \(X\) past singularities but also provide for error estimation to allow efficient time stepping. Finally, several examples are shown to validate the theory.

MSC:

65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
93C05 Linear systems in control theory
15A24 Matrix equations and identities
Full Text: DOI

References:

[1] Abou-Kandil, H.; Freiling, G.; Ionescu, V.; Jank, G., Matrix Riccati Equations in Control and Systems Theory (2003), Birkhäuser Verlag: Birkhäuser Verlag Berlin · Zbl 1027.93001
[2] Ascher, U. M.; Mattheij, R. M.; Russell, R. D., Numerical Solution of Boundary Value Problems for Ordinary Differential Equations (1988), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0671.65063
[3] Babuška, I.; Majer, V., The factorization method for the numerical solution of two point boundary value problems for linear ODE’s, SIAM J. Numer. Anal., 24, 1301-1334 (1987) · Zbl 0644.65052
[4] Blanes, S.; Casas, F.; Ros, J., High order optimized geometric integrators for linear differential equations, BIT, 42, 262-284 (2002) · Zbl 1008.65045
[5] Blanes, S.; Ponsoda, E., Time-averaging and exponential integrators for non-homogeneous linear IVPs and BVPs, Appl. Numer. Math., 62, 875-894 (2012) · Zbl 1243.65075
[6] Brown, D. L.; Lorenz, J., A high-order method for stiff boundary value problems with turning points, SIAM J. Sci. Stat. Comput., 8, 790-805 (1987) · Zbl 0635.65089
[7] Brown, P. N.; Hindmarsh, A. C.; Petzold, L. R., Using krylov methods in the solution of large-scale differential-algebraic systems, SIAM J. Sci. Comput., 15, 1467-1488 (1994) · Zbl 0812.65060
[8] Brown, P. N., Consistent initial condition calculation for differential-algebraic systems, SIAM J. Sci. Comput., 19, 1495-1512 (1998) · Zbl 0915.65079
[9] Butcher, J. C., Numerical Methods For Ordinary Differential Equations (2008), Wiley: Wiley West Sussex, England · Zbl 1167.65041
[10] Cameron, F.; Palmroth, M.; Piché, R., Quasi stage order conditions for SDIRK methods, Appl. Numer. Math., 42, 61-75 (2002) · Zbl 0998.65071
[11] Choi, C. H.; Laub, A. J., Constructing Riccati differential equations with known analytic solutions for numerical experiments, IEEE Trans. Autom. Control, 35, 437-439 (1990) · Zbl 0705.93019
[12] Choi, C. H., Efficient matrix-valued algorithm for solving stiff Riccati differential equations, IEEE Trans. Autom. Control, 35, 770-776 (1990) · Zbl 0714.93011
[13] Davison, E. J.; Maki, M. C., The numerical solution of the matrix differential Riccati equation, IEEE Trans. Autom. Control, AC-18, 71-73 (1973) · Zbl 0263.93031
[14] Dieci, L., Numerical integration of the differential Riccati equation and some related issues, SIAM J. Numer. Anal., 29, 781-815 (1992) · Zbl 0768.65037
[15] Dieci, L.; Osborne, M. R.; Russell, R. D., A Riccati transformation method for solving linear BVPs. I: theoretical aspects, SIAM J. Numer. Anal., 25, 1055-1073 (1988) · Zbl 0664.65074
[16] Dieci, L., A Riccati transformation method for solving linear BVPs. II: computational aspects, SIAM J. Numer. Anal., 25, 1074-1092 (1988) · Zbl 0664.65075
[17] Dormand, J. R.; Prince, P. J., A family of embedded Runge-Kutta formulae, J. Comput. Appl. Math., 6, 19-26 (1980) · Zbl 0448.65045
[19] Franco, J. M.; Gómez, I.; Rández, L., SDIRK methods for stiff ODEs with oscillating solutions, J. Comput. Appl. Math., 81, 197-209 (1997) · Zbl 0887.65078
[23] Hairer, E.; Lubich, C.; Wanner, G., Geometric numerical integration: structure-preserving algorithms for ordinary differential equations, No. 31, (Springer Series in Computational Mathematics (2006), Springer: Springer Berlin) · Zbl 1094.65125
[24] Hairer, E.; Nrsett, S. P.; Wanner, G., Solving Ordinary Differential Equations I (1993), Springer-Verlag: Springer-Verlag New York · Zbl 0789.65048
[27] Kenney, C. S.; Leipnik, R. B., Numerical integration of the differential matrix Riccati equation, IEEE Trans. Autom. Control, AC-30, 962-970 (1985) · Zbl 0594.65054
[28] Kvrn, A., Singly diagonally implicit Runge-Kutta methods with an explicit first stage, BIT, 44, 489-502 (2004) · Zbl 1066.65077
[29] Kwakernaak, H.; Sivan, R., Linear Optimal Control Systems (1972), Wiley Interscience: Wiley Interscience New York · Zbl 0276.93001
[30] Lainiotis, D. G., Generalized Chandrasekhar algorithms: time-varying models, IEEE Trans. Autom. Control, AC-21, 728-732 (1976) · Zbl 0334.93060
[31] Lainiotis, D. G., Partitioned Riccati solutions and integration-free doubling algorithms, IEEE Trans. Autom. Control, AC-21, 677-689 (1976) · Zbl 0344.93063
[32] Lambert, J. D., Computational Methods in Ordinary Differential Equations (1973), John Wiley & Sons: John Wiley & Sons London · Zbl 0258.65069
[33] Lambert, J. D., Numerical Methods for Ordinary Differential Systems (1991), John Wiley & Sons: John Wiley & Sons New York · Zbl 0745.65049
[34] Laub, A. J., Schur techniques for Riccati differential equations, (Hinrichsen, D.; Isidori, A., Feedback Control of Linear and Nonlinear Systems (1982), Springer-Verlag: Springer-Verlag New York) · Zbl 0492.93039
[35] Leipnik, R. B., A canonical form and solution for the matrix Riccati differential equation, Bull. Aust. Math. Soc., 26, 355-361 (1985) · Zbl 0576.34024
[36] Li, R.-C.; Kahan, W., A family of anadromic numerical methods for matrix Riccati differential equations, Math. Comput., 81, 233-265 (2012) · Zbl 1236.65080
[37] Nrsett, S. P.; Thomsen, P. G., Local error control in SDIRK-methods, BIT, 26, 100-113 (1986) · Zbl 0627.65082
[38] Rand, D. W.; Winternitz, P., Nonlinear superposition principles: a new numerical method for solving matrix Riccati equations, Comput. Phys. Commun., 33, 305-328 (1984)
[39] Reid, W. T., Riccati Differential Equations (1972), Academic Press: Academic Press New York · Zbl 0254.34003
[40] Rusnak, I., Almost analytic representation for the solution of the differential matrix Riccati equation, IEEE Trans. Autom. Control, 33, 191-193 (1988) · Zbl 0636.34004
[41] Schiff, J.; Shnider, S., A natural approach to the numerical integration of Riccati differential equations, SIAM J. Numer. Anal., 36, 1392-1413 (1999) · Zbl 0936.34027
[42] Shampine, L. F.; Gladwell, I.; Thompson, S., Solving ODEs with MATLAB (2003), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 1040.65058
[43] Shampine, L. F.; Reichel, M. W., The MATLAB ODE suite, SIAM J. Sci. Comput., 18, 1-22 (1997) · Zbl 0868.65040
[44] Shampine, L. F.; Watts, H. A., The art of writing a Runge-Kutta code. II, Appl. Math. Comput., 5, 93-121 (1979) · Zbl 0431.68039
[45] Shayman, M. A., Phase portrait of the matrix Riccati equation, SIAM J. Control Optim., 24, 1-65 (1986) · Zbl 0594.34044
[46] Sorine, M.; Winternitz, P., Superposition laws for solutions of differential matrix Riccati equations arising in control theory, IEEE Trans. Autom. Control, AC-30, 266-272 (1985) · Zbl 0597.93023
[47] Subrahmanyam, M. B., Numerical method for the solution of the singular Riccati matrix, Optim. Control Appl. Methods., 10, 197-202 (1989) · Zbl 0677.93025
[48] Vaughan, D. R., A negative exponential solution for the matrix Riccati equation, IEEE Trans. Autom. Control, AC-14, 72-75 (1969)
[49] Zelikin, M. I., Control theory and optimization I: homogeneous spaces and the Riccati equation in calculus of variations, (Encyclopaedia of Mathematical Sciences, vol. 86 (2000), Springer: Springer Berlin), Originally published in Russian in 1998 and translated into English by S.A. Vakhrameev · Zbl 0951.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.