×

Adaptive finite-time fault-tolerant consensus protocols for multiple mechanical systems. (English) Zbl 1336.93045

Summary: This paper investigates the problem of finite-time fault-tolerant consensus protocols for a class of uncertain multiple mechanical systems. On the basis of the recursive design method and finite-time control theory, distributed consensus protocols and adaptive laws are developed by using locally available information. Fuzzy logic systems are employed to approximate the unknown functions. It is proved that if the designed parameters and functions in the protocols and adaptive laws are suitably chosen, the position errors and the velocity errors between any two mechanical systems will converge to a small neighborhood of zero in finite time. Finally, an example is given to demonstrate the effectiveness of the proposed method.

MSC:

93B35 Sensitivity (robustness)
93A14 Decentralized systems
93C40 Adaptive control/observation systems
70Q05 Control of mechanical systems
03B52 Fuzzy logic; logic of vagueness
Full Text: DOI

References:

[2] Lin, P.; Jia, Y., Distributed rotating formation control of multi-agent systems, Syst. Control Lett., 59, 10, 587-595 (2010) · Zbl 1201.93010
[3] Ren, W., Distributed attitude alignment in spacecraft formation flying, Int. J. Adapt. Control Signal Process., 21, 2-3, 95-113 (2007) · Zbl 1115.93338
[4] Weng, S.; Yue, D.; Sun, Z.; Xiao, L., Distributed robust finite-time attitude containment control for multiple rigid bodies with uncertainties, Int. J. Robust Nonlinear Control, 25, 15, 2561-2581 (2015) · Zbl 1328.93092
[5] Olfati-Saber, R., Flocking for multi-agent dynamic systemsalgorithms and theory, IEEE Trans. Autom. Control, 51, 3, 401-420 (2004) · Zbl 1366.93391
[6] Hwang, K. S.; Tan, S. W.; Hsiao, M. C.; Wu, C. S., Cooperative multiagent congestion control for high-speed networks, IEEE Trans. Syst. Man Cybern. Part B: Cybern., 35, 2, 255-268 (2005)
[7] Olfati-Saber, R.; Murray, R. M., Consensus problems in networks of agents with switching topology and time-delays, IEEE Trans. Autom. Control, 49, 9, 1520-1533 (2004) · Zbl 1365.93301
[8] Ni, W.; Cheng, D., Leader-following consensus of multi-agent systems under fixed and switching topologies, Syst. Control Lett., 59, 3-4, 209-217 (2010) · Zbl 1223.93006
[9] Ding, L.; Han, Q. L.; Guo, G., Network-based leader-following consensus for distributed multi-agent systems, Automatica, 49, 7, 2281-2286 (2013) · Zbl 1364.93014
[10] Nguyen, D. H., A sub-optimal consensus design for multi-agent systems based on hierarchical LQR, Automatica, 55, 88-94 (2015) · Zbl 1378.93006
[11] Bhat, S. P.; Bernstein, D. S., Continuous finite-time stabilization of the translational and rotational double integrators, IEEE Trans. Autom. Control, 43, 5, 678-682 (1998) · Zbl 0925.93821
[12] Bhat, S. P.; Bernstein, D. S., Finite-time stability of continuous autonomous systems, SIAM J. Control Optim., 38, 3, 751-766 (2000) · Zbl 0945.34039
[14] Zhao, L. W.; Hua, C. C., Finite-time consensus tracking of second-order multi-agent systems via nonsingular TSM, Nonlinear Dyn., 75, 1-2, 311-318 (2014) · Zbl 1281.93006
[15] Li, S.; Du, H.; Lin, X., Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics, Automatica, 47, 8, 1706-1712 (2011) · Zbl 1226.93014
[16] Wang, L.; Xiao, F., Finite-time consensus problems for networks of dynamic agents, IEEE Trans. Autom. Control, 55, 4, 950-955 (2010) · Zbl 1368.93391
[17] Jiang, F.; Wang, L., Finite-time information consensus for multi-agent systems with fixed and switching topologies, Physica D, 238, 1550-1560 (2009) · Zbl 1170.93304
[18] Zhang, Y.; Yang, Y., Finite-time consensus of second-order leader-following multi-agent systems without velocity measurements, Phys. Lett. A, 377, 3, 243-249 (2013) · Zbl 1298.91116
[19] Yu, H.; Shen, Y.; Xia, X., Adaptive finite-time consensus in multi-agent networks, Syst. Control Lett., 62, 10, 880-889 (2013) · Zbl 1281.93013
[20] Cao, Y.; Ren, W., Finite-time consensus for multi-agent networks with unknown inherent nonlinear dynamics, Automatica, 50, 10, 2648-2656 (2014) · Zbl 1301.93008
[21] Huang, J.; Wen, C.; Wang, W.; Song, Y. D., Adaptive finite-time consensus control of a group of uncertain nonlinear mechanical systems, Automatica, 51, 292-301 (2015) · Zbl 1309.93011
[22] Liu, H.; Cheng, L.; Tan, M.; Hou, Z.; Wang, Y., Distributed exponential finite-time coordination of multi-agent systemscontainment control and consensus, Int. J. Control, 88, 2, 237-247 (2015) · Zbl 1328.93025
[23] Cheng, L.; Hou, Z. G.; Tan, M.; Lin, Y.; Zhang, W., Neural-network-based adaptive leader-following control for multiagent systems with uncertainties, IEEE Trans. Neural Netw., 21, 8, 1351-1358 (2010)
[24] Hou, Z. G.; Cheng, L.; Tan, M., Decentralized robust adaptive control for the multiagent system consensus problem using neural networks, IEEE Trans. Syst. Man Cybern. Part B: Cybern., 39, 3, 636-647 (2009)
[25] Kabore, P.; Wang, H., Design of fault diagnosis filters and fault-tolerant control for a class of nonlinear systems, IEEE Trans. Autom. Control, 46, 11, 1805-1810 (2001) · Zbl 1006.93068
[26] Tao, G.; Chen, S.; Joshi, S. M., An adaptive control scheme for systems with unknown actuator failures, Automatica, 2, 6, 1027-1034 (2002) · Zbl 1015.93030
[27] Zhang, X.; Parisini, T.; Polycarpou, M. M., Adaptive fault-tolerant control of nonlinear uncertain systemsan information-based diagnostic approach, IEEE Trans. Autom. Control, 49, 8, 1259-1274 (2004) · Zbl 1365.93250
[28] Liu, M.; Ho, D. W.C.; Shi, P., Adaptive fault-tolerant compensation control for Markovian jump systems with mismatched external disturbance, Automatica, 58, 5-14 (2015) · Zbl 1326.93020
[29] Yang, H.; Staroswiecki, M.; Jiang, B.; Liu, J., Fault tolerantcooperative control for a class of nonlinear multi-agent systems, Syst. Control Lett., 60, 4, 271-277 (2011) · Zbl 1216.93010
[30] Zhou, B.; Wang, W.; Ye, H., Cooperative control for consensus of multi-agent systems with actuator faults, Comput. Electr. Eng., 40, 2154-2166 (2014)
[31] Zhao, L.; Jia, Y., Neural network-based adaptive consensus tracking control for multi-agent systems under actuator faults, Int. J. Syst. Sci., 47, 8, 1931-1942 (2016) · Zbl 1337.93013
[32] Shen, Q.; Jiang, B.; Shi, P.; Zhao, J., Cooperative adaptive fuzzy tracking control for networked unknown nonlinear multiagent systems with time-varying actuator faults, IEEE Trans. Fuzzy Syst., 22, 3, 494-504 (2014)
[33] Lu, K.; Xia, Y., Finite-time fault-tolerant control for rigid spacecraft with actuator saturations, IET Control Theory Appl., 7, 11, 1529-1539 (2013)
[34] Zhang, A.; Hu, Q.; Friswell, M. I., Finite-time fault tolerant attitude control for over-activated spacecraft subject to actuator misalignment and faults, IET Control Theory Appl., 7, 16, 2007-2020 (2013)
[35] Hu, Q.; Huo, X.; Xiao, B., Reaction wheel fault tolerant control for spacecraft attitude stabilization with finite-time convergence, Int. J. Robust Nonlinear Control, 23, 15, 1737-1752 (2013) · Zbl 1274.93047
[36] Huo, X.; Hu, Q.; Xiao, B., Finite-time fault tolerant attitude stabilization control for rigid spacecraft, ISA Trans., 53, 2, 241-250 (2014)
[37] Lu, K.; Xia, Y.; Fu, M.; Yu, C., Adaptive finite-time attitude stabilization for rigid spacecraft with actuator faults and saturation constraints, Int. J. Robust Nonlinear Control, 26, 1, 28-46 (2016) · Zbl 1333.93209
[38] Huo, B.; Xia, Y.; Lu, K.; Fu, M., Adaptive fuzzy finite-time fault-tolerant attitude control of rigid spacecraft, J. Frankl. Inst., 352, 10, 4225-4246 (2015) · Zbl 1395.93299
[39] Zhu, Z.; Xia, Y.; Fu, M., Attitude stabilization of rigid spacecraft with finite-time convergence, Int. J. Robust Nonlinear Control, 21, 6, 686-702 (2011) · Zbl 1214.93100
[40] Chen, B.; Liu, X.; Liu, K.; Lin, C., Adaptive fuzzy tracking control of nonlinear MIMO systems with time-varying delays, Fuzzy Sets Syst., 217, 2, 1-21 (2013) · Zbl 1285.93052
[41] Lewis, F.; Dawson, D.; Abdallah, C., Robot Manipulator Control Theory and Practice (2004), Marcel Dekker, Inc, New York
[42] Qian, C.; Lin, W., A continuous feedback approach to global strong stabilization of nonlinear systems, IEEE Trans. Autom. Control, 46, 7, 1061-1079 (2001) · Zbl 1012.93053
[43] Hardy, G.; Littlewood, J.; Polya, G., Inequalities (1952), Cambridge University Press: Cambridge University Press Cambridge · JFM 60.0169.01
[44] Qian, C.; Lin, W., Non-Lipschitz continuous stabilizers for nonlinear systems with uncontrollable unstable linearization, Syst. Control Lett., 42, 3, 185-200 (2001) · Zbl 0974.93050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.