×

Model order reduction of parameterized circuit equations based on interpolation. (English) Zbl 1336.93037

Summary: In this paper, the state-of-the-art interpolation-based model order reduction methods are applied to parameterized circuit equations. We analyze these methods in great details, through which the advantages and disadvantages of each method are illuminated. The presented model reduction methods are then tested on two circuit models.

MSC:

93B11 System structure simplification
65D05 Numerical interpolation
65L80 Numerical methods for differential-algebraic equations
93C05 Linear systems in control theory
65F30 Other matrix algorithms (MSC2010)

Software:

PABTEC; Loewner

References:

[1] Absil, P.A., Mahony, R., Sepulchre, R.: Riemannian geometry of Grassmann manifolds with a view on algorithmic computations. Acta. Appl. Math. 8, 199-220 (2004) · Zbl 1052.65048 · doi:10.1023/B:ACAP.0000013855.14971.91
[2] Allasia, G.: Simultaneous interpolation and approximation by a class of multivariate positive operators. Numer. Alg. 34, 147-158 (2003) · Zbl 1062.47024 · doi:10.1023/B:NUMA.0000005359.72118.b6
[3] Amsallem, D.: Interpolation on manifolds of CFD-based fluid and finite element-based structural reduced-order models for on-line aeroelastic predictions. Ph.D. thesis, Stanford University (2010)
[4] Amsallem, D., Cortial, J., Carlberg, K., Farhat, C.: A method for interpolating on manifolds structural dynamics reduced-order models . Internat. J. Numer. Methods Engng. 80(9), 1241-1258 (2009) · Zbl 1176.74077 · doi:10.1002/nme.2681
[5] Amsallem, D., Farhat, C.: Interpolation method for adapting reduced-order models and application to aeroelasticity. AIAAJ 46(7), 1803-1813 (2008) · doi:10.2514/1.35374
[6] Amsallem, D., Farhat, C.: An online method for interpolating linear reduced-order models. SIAM J. Sci. Comput. 33(5), 2169-2198 (2011) · Zbl 1269.65059 · doi:10.1137/100813051
[7] Antoulas, A.: A new result on passivity preserving model reduction. Syst. Control Lett. 54(4), 361-374 (2005) · Zbl 1129.93304 · doi:10.1016/j.sysconle.2004.07.007
[8] Antoulas, A., Beattie, C., Gugercin, S.: Interpolatory model reduction of large-scale dynamical systems. In: Mohammadpour, J., Grigoriadis K. (eds.) Efficient Modeling and Control of Large-Scale Systems, pp. 3-58. Springer-Verlag (2010) · Zbl 1229.65103
[9] Arnoldi, W.: The principle of minimized iterations in the solution of the matrix eigenvalue problem. Quart. Appl. Math. 9, 17-29 (1951) · Zbl 0042.12801
[10] Baur, U., Beattie, C., Benner, P., Gugercin, S.: Interpolatory projection methods for parameterized model reduction. SIAM J. Sci. Comput 33(5), 2489-2518 (2011) · Zbl 1254.93032 · doi:10.1137/090776925
[11] Baur, U., Benner, P.: Modellreduktion für parametrisierte Systeme durch balanciertes Abschneiden und Interpolation. at-Automatisierungstechnik 57(8), 411-419 (2009) · doi:10.1524/auto.2009.0787
[12] Baur, U., Benner, P., Greiner, A., Korvink, J., Lienemann, J., Moosmann, C.: Parameter preserving model order reduction for MEMS applications. Math. Comput. Model. Dyn. Syst. 17(5), 297-317 (2011) · Zbl 1302.74063 · doi:10.1080/13873954.2011.547658
[13] Benner, P., Feng, L.: A robust algorithm for parametric model order reduction based on implicit moment matching. In: Quarteroni, A., Rozza, R. (eds.) Reduced Order Methods for Modeling and Computational Reduction, vol. 9, pp. 159-186. Springer-Verlag, Berlin (2014) · Zbl 1312.65109
[14] Benner, P., Gugercin, S., Willcox, K.: A survey of model reduction methods for parametric systems. Tech. Rep. MPIMD/13-14. Max Planck Institute, Magdeburg (2013). Available from URL http://www.mpi-magdeburg.mpg.de/preprints/ · Zbl 1339.37089
[15] Bond, B.N., Daniel, L.: A piecewise-linear moment-matching approach to parameterized model-order reduction for highly nonlinear systems. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 26(12), 1467-1480 (2007) · doi:10.1109/TCAD.2007.907258
[16] Bui-Thanh, T., Willcox, K., Ghattas, O.: Model reduction for large-scale systems with high-dimensional parametric input space. SIAM J. Sci. Comput. 30(6), 3270-3288 (2008) · Zbl 1196.37127 · doi:10.1137/070694855
[17] Bungartz, H.J., Griebel, M.: Sparse grids. Acta Numerica 13, 147-269 (2004) · Zbl 1118.65388 · doi:10.1017/S0962492904000182
[18] Daniel, L., Siong, O., Chay, L., Lee, K., White, J.: A multiparameter moment-matching model-reduction approach for generating geometrically parameterized interconnect performance models. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 23(5), 678-693 (2004) · doi:10.1109/TCAD.2004.826583
[19] Degroote, J., Vierendeels, J., Willcox, K.: Interpolation among reduced-order matrices to obtain parameterized models for design, optimization and probabilistic analysis. Int. J. Numer. Methods Fluids 63, 207-230 (2010) · Zbl 1188.65110
[20] D’Elia, M., Dedé, L., Quarteroni, A.: Reduced basis method for parameterized differential algebraic equations. Bol. Soc. Esp. Math. Apl. 46, 45-73 (2009) · Zbl 1242.65149
[21] Elfadel, I.M., Ling, D.D.: A block rational Arnoldi algorithm for multipoint passive model-order reduction of multiport RLC networks. In: Digest of Technical Papers of 1997 IEEE/ACM International Conference Computer-Aided Design, pp. 66-71 (1997) · Zbl 1254.93032
[22] Farle, O., Hill, V., Ingelström, P., Dyczij-Edlinger, R.: Multi-parameter polynomial order reduction of linear finite element models. Math. Comput. Model. Dyn. Syst. 14, 421-434 (2008) · Zbl 1151.93013 · doi:10.1080/13873950701844220
[23] Feldmann, P., Freund, R.: Efficient linear circuit analysis by Padé approximation via the Lanczos process. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 14, 639-649 (1995) · doi:10.1109/43.384428
[24] Feng, L., Rudnyi, E., Korvink, J.: Preserving the film coefficient as a parameter in the compact thermal model for fast electrothermal simulation. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 24(12), 1838-1847 (2005) · doi:10.1109/TCAD.2005.852660
[25] Ferranti, F., Antonini, G., Dhaene, T., Knockaert, L.: Passivity-preserving interpolation-based parameterized model order reduction of PEEC models based on scattered grids. Int. J. Numer. Modell. 24(5), 478-495 (2011) · Zbl 1230.78036 · doi:10.1002/jnm.793
[26] Ferrer, J., García, M.I., Peurta, F.: Differentiable families of subspaces. Linear Algebra Appl. 199, 229-252 (1994) · Zbl 0803.58010 · doi:10.1016/0024-3795(94)90351-4
[27] Freund, R.: Krylov-subspace methods for reduced-order modeling in circuit simulation. J. Comput. Appl. Math. 123(1-2), 395-421 (2000) · Zbl 0964.65082 · doi:10.1016/S0377-0427(00)00396-4
[28] Freund, R.: The SPRIM algorithm for structure-preserving order reduction of general RCL circuits model reduction for circuit simulation. In: Benner, P., Hinze, M., ter Maten, E. (eds.) Model Reduction for Circuit Simulation, Lecture Notes in Electrical Engineering, vol. 74, pp. 25-52. Springer-Verlag, Berlin (2011) · Zbl 1302.74063
[29] Gallivan, K., Vandendorpe, A., Dooren, P.V.: Model reduction of MIMO systems via tangential interpolation. SIAM J. Matrix Anal. Appl. 26(2), 328-349 (2004) · Zbl 1078.41016 · doi:10.1137/S0895479803423925
[30] Geuss, M., Panzer, H., Lohmann, B.: On parametric model order reduction by matrix interpolation. In: Proceedings of the European Control Conference, pp. 3433-3438. IEEE, Zürich (2013)
[31] Grimme, E.: Krylov projection methods for model reduction. Ph.D. thesis. University of Illinois, Urbana-Champaign (1997)
[32] Gunupudi, P., Khazaka, R., Nakhla, M.: Analysis of transmission line circuits using multidimensional model reduction techniques. IEEE Trans. Adv. Packag. 25(2), 174-180 (2002) · doi:10.1109/TADVP.2002.803271
[33] Haasdonk, B., Ohlberger, M.: Efficient reduced models and a posteriori error estimation for parametrized dynamical systems by offline/online decomposition. Math. Comput. Model. Dyn. Syst. 17(2), 145-161 (2011) · Zbl 1230.37110 · doi:10.1080/13873954.2010.514703
[34] Hay, A., Borggaard, J., Akhtar, I., Pelletier, D.: Reduced-order models for parameter dependent geometries based on shaped sensitivity analysis. J. Comput. Phys. 229, 1327-1353 (2010) · Zbl 1329.76058 · doi:10.1016/j.jcp.2009.10.033
[35] Ionita, A., Antoulas, A.: Data-driven parametrized model reduction in the Loewner framework. SIAM J. Sci. Comput. 36(3), A984-A1007 (2014) · Zbl 1297.65072 · doi:10.1137/130914619
[36] Ionutiu, R., Rommes, J.: On synthesis of reduced order models. In: Benner, P., Hinze, M., ter Maten, E. (eds.) Model Reduction for Circuit Simulation, Lecture Notes in Electrical Engineering, vol. 74, pp. 201-214. Springer-Verlag, Berlin (2011) · Zbl 1129.93304
[37] Leung, A.T., Khazaka, R.: Parametric model order reduction technique for design optimization. In: Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS 2005), vol. 2, pp. 1290-1293 (2005) · Zbl 1352.93032
[38] Li, Y.T., Bai, Z., Su, Y.: A two-directional Arnoldi process and its application to parametric model order reduction. Comput. J. Appl. Math. 226, 10-21 (2009) · Zbl 1160.65012 · doi:10.1016/j.cam.2008.05.059
[39] Moore, B.: Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Autom. Control AC-26(1), 17-32 (1981) · Zbl 0464.93022 · doi:10.1109/TAC.1981.1102568
[40] Odabasioglu, A., Celik, M., Pileggi, L.: PRIMA: Passive reduced-order interconnect macromodeling algorithm. IEEE Trans. Circuits Syst. 17(8), 645-654 (1998)
[41] Panzer, H., Mohring, J., Eid, R., Lohmann, B.: Parametric model order reduction by matrix interpolation. at-Automatisierungtechnik 58(8), 475-484 (2010)
[42] Reis, T.: Circuit synthesis of passive descriptor systems - a modified nodal approach. Int. J. Circuit Theory Appl. 38(1), 44-68 (2010) · Zbl 1191.94159 · doi:10.1002/cta.532
[43] Reis, T, Stykel, T.: PABTEC: Passivity-preserving balanced truncation for electrical circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(9), 1354-1367 (2010) · doi:10.1109/TCAD.2010.2059330
[44] Reis, T., Stykel, T.: Lyapunov balancing for passivity-preserving model reduction of RC circuits. SIAM J. Appl. Dyn. Syst. 10(1), 1-34 (2011) · Zbl 1213.78038 · doi:10.1137/090779802
[45] Son, N.: Interpolation based parametric model order reduction. Ph.D. thesis (2012)
[46] Son, N.: A real time procedure for affinely dependent parametric model order reduction using interpolation on grassmann manifolds. Int. J. Numer. Methods Eng. 93(8), 818-833 (2013) · Zbl 1352.93032
[47] Sorensen, D.: Passivity preserving model reduction via interpolation of spectral zeros. Syst. Control Lett. 54(4), 347-360 (2005) · Zbl 1129.93340 · doi:10.1016/j.sysconle.2004.07.006
[48] Steinbrecher, A., Stykel, T.: Element-based model reduction in circuit simulation. In: Benner, P. (ed.) System Reduction for Nanoscale IC Design, Mathematics in Industry, vol. 20, pp. 31-66. Springer-Verlag, Berlin (2014) · Zbl 1118.65388
[49] Stykel, T.: Balancing-related model reduction of circuit equations using topological structure. In: Benner, P., Hinze, M., ter Maten, E. (eds.) Model Reduction for Circuit Simulation, Lecture Notes in Electrical Engineering, vol. 74, pp. 53-80. Springer-Verlag, Berlin (2011) · Zbl 1329.76058
[50] Villena, J., Silveira, L.: SPARE - A scalable algorithm for passive, structure preserving, parameter-aware model reduction. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(6), 925-938 (2010) · doi:10.1109/TCAD.2010.2048372
[51] Vlach, J., Singhal, K.: Computer Methods for Circuit Analysis and Design. Kluwer Academic Publisherd, Dordrecht (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.